【题目】如图:在平面直角坐标系中,点A在X轴的正半轴,OA=8 ,点B在第一象限,∠AOB=60°,AB⊥OB垂足为B, 点D、C分别在边OB、OA上,且OD=AC=t,以OD、OC为边作平行四边形OCED,DE交直线AB为F,CE交直线AB为点G.
(1) 当t=2时, 则E的坐标为
(2) 若ΔDFC的面积为,求t的值。
(3) 当D、 B 、G、 E四点为顶点的四边形为平行四边形时,在Y轴上存在点M,过点M作FC的平行线交直线OB为点N,若以M、 N、 F、 C为顶点的四边形也是平行四边形,则点M的坐标为 (直接写出答案)
【答案】(1)(7,);(2);(3)(0,),(0,).
【解析】
(1)根据平行四边形的性质以及勾股定理计算即可;
(2)根据三角形的面积公式,用含t的代数式分别表示出三角形的底和高,列出方程即可;
(3)先根据四边形BDGE是平行四边形计算出t的值;再根据四边形MNCF是平行四边形算出点M的坐标即可.
(1)过点D作DQ⊥OA于点Q,则∠ DQO=90°
当t=2时,OD=AC=2
则OC=OA-AC=8-2=6
在平行四边形OCED中,DE=OC=6
在Rt△OQD中,∠AOB=60°,∠ DQO=90°,
∴,
∴点E的横坐标为:1+6=7,纵坐标为:
故点E的坐标为:(7,)
(2)在平行四边形OCED中,CE=OD=t,且OD∥CE,OC∥DE
∵AB⊥OB
∴∠ ABO=90°
又∵OD∥CE
∴∠ AGC=90°,∠ACG=∠AOB=60°,
在Rt△ACG中,∠ACG =60°,∠AGC =90°,
∴,
∴
∴CG=EG
∵OC∥DE
∴∠ACG=∠FEG
在△ACG和△FEG中,
∴△ACG≌△FEG
∴EF=AC=t
∴
由(1)知,,则
∴
又∵ΔDFC的面积为
∴
解得:,
(3)当点M在y轴正半轴上时;
在Rt△AOB中,∠AOB =60°,∠ABO =90°,
∴,
∴
∵四边形BDGE是平行四边形
∴
∴
由(2)知
∴
解得:
∴
∵OC∥DE,DQ⊥OC,FP⊥OC
∴
若四边形MNCF是平行四边形,
则有MN=CF
有题设条件易得,△CPF≌△NHM
∴,
在Rt△OHN中,∠OHN =90°,∠HON =90°-60°=30°,
∴,
∴
∴点M的坐标为(0,)
当点M在y轴负半轴上时;同理可得点M的坐标为(0,)
综上所述:点M的坐标为(0,)或(0,)
科目:初中数学 来源: 题型:
【题目】如图,是一个照相机成像的示意图,像高MN,景物高度AB、
CD为水平视线,根据物体成像原理知:AB∥MN,CD⊥MN.
(1)如果像高MN是35mm,焦距CL是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物的距离LD是多少?
(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少毫米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.
(1)若两种树苗购买的棵数一样多,求梨树苗的单价;
(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题呈现:我们知道反比例函数y=(x>0)的图象是双曲线,那么函数y=+n(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数y=(x>0)的图象有怎样的关系呢?让我们一起开启探索之旅……
探索思考:我们可以借鉴以前研究函数的方法,首先探索函数y=的图象.
(1)填写下表,并画出函数y=的图象.
①列表:
x | … | ﹣5 | ﹣3 | ﹣2 | 0 | 1 | 3 | … |
y | … | … |
②描点并连线.
(2)观察图象,写出该函数图象的两条不同类型的特征:
① ② ;
理解运用:函数y=的图象是由函数y=的图象向 平移 个单位,其对称中心的坐标为 .
灵活应用:根据上述画函数图象的经验,想一想函数y=+2的图象大致位置,并根据图象指出,当x满足 时,y≥3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图 1 是小红在“淘宝双 11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图 2 所示。已知两支脚 AB=AC,O 为 AC 上固定连接点,靠背 OD=10 分米。档位为Ⅰ档时,OD∥AB,档位为Ⅱ挡时,OD’⊥AC,过点O作OG∥BC,则∠DOG+∠D’OG=_________°当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端 D 向后靠至 D’,此时点 D 移动的水平距离是 2 分米,即 ED’=2 分米。DH⊥OG于点H,则D到直线OG的距离为_________ 分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为长方形,C点在x轴,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),长方形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,F(2,4).
(1)求G点坐标;
(2)△EFG的面积为 (直接填空);
(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的纵坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com