精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB90°,ACBC,点DAB边上的一点,连结CD,过点CCD的垂线,与经过点CDB的圆交于点E,连结DE,交CB于点F.若AD1DB3,则线段DE的长为_____;△CDF的面积为_____

【答案】

【解析】

DDHBCH,解直角三角形得到ACBCAB,∠B45°,推出BDH是等腰直角三角形,得到BHDHBD根据勾股定理得到CD,求得DECD,根据相似三角形的性质得到BF,求得CF,由三角形的面积公式即可得到结论.

DDHBCH

AD1DB3

ABAD+BD4

ABC中,∠ACB90°ACBC

ACBCAB,∠B45°

∵∠ACB=∠DHB90°

∴△BDH是等腰直角三角形,

BHDHBD

CHBCBH

CD

CDCE,∠E=∠B45°

DCE是等腰直角三角形,

DECD

∵∠ACB=∠DCE90°

∴∠ACB=∠BCE

∵∠BCE=∠BDE

∴∠ACD=∠BDF

∵∠A=∠B

∴△ACD∽△BDF

BF

CF

∴△CDF的面积为

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知O是坐标原点,BC两点的坐标分别为(3-1)、(21

1)以O点为位似中心在y轴的左侧将OBC放大两倍(即新图与原图的相似比为2),请在图中画出B1 OC1,并写出这时B1 坐标

2)将BOC绕点O逆时针旋转90°后得到B2OC2,请在图中作B2OC2,,井写出这时点B2的坐标为

3)在(2)中的旋转过程中,求线段BC扫过的图形的面积 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(

A. (,0) B. (1,0) C. (,0) D. (,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),IABC的内心,将ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为(  )

A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理AB两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等

1)求每台A型、B型净水器的进价各是多少元?

2)该公司计划购进AB两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的一边AB为直径的半圆与其它两边ACBC的交点分别为DE,且点D的中点.

1)若∠A70°,求∠DBE的度数;

2)求证:ABAC

3)若O的半径为5cmBC12cm,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB经过O上的点C,并且OAOBCACBO交直线OBED,连接ECCD

1)求证:直线ABO的切线;

2)若tanCEDO的半径为3,求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.

甲射靶成绩的条形统计图

乙射靶成绩的折线统计图

)请你根据图中的数据填写下表:

平均数

众数

方差

__________

__________

__________

)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与轴交于两点左侧),与轴交于点,顶点为

1)当时,求四边形的面积

2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;

3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长,且,若的外角平分线交点在新抛物线上,求点坐标.

查看答案和解析>>

同步练习册答案