精英家教网 > 初中数学 > 题目详情
16.如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为y=2x2-4x+4.

分析 由AAS证明△AHE≌△BEF,得出AE=BF=x,AH=BE=2-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.

解答 解:如图所示:

∵四边形ABCD是边长为2的正方形,
∴∠A=∠B=90°,AB=2.
∴∠1+∠2=90°,
∵四边形EFGH为正方形,
∴∠HEF=90°,EH=EF.
∴∠1+∠3=90°,
∴∠2=∠3,
在△AHE与△BEF中,
∵$\left\{\begin{array}{l}{∠A=∠B}\\{∠2=∠3}\\{EH=FE}\end{array}\right.$,
∴△AHE≌△BEF(AAS),
∴AE=BF=x,AH=BE=2-x,
在Rt△AHE中,由勾股定理得:
EH2=AE2+AH2=x2+(2-x)2=2x2-4x+4;
即y=2x2-4x+4(0<x<2),
故答案为:y=2x2-4x+4.

点评 本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当tan∠AEC=$\frac{3}{4}$,BC=8时,求OD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目里程费时长费远途费
单价1.8元/公里0.3元/分钟0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差(  )
A.10分钟B.13分钟C.15分钟D.19分钟

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度4的地方(即同时使OA=4OD,OB=4OC),然后张开两脚,使A,B两个尖端分别在线段l的两个端点上,若CD=3,则AB的长是(  )
A.12B.9C.8D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知抛物线y=ax2+bx-3经过A(-1,0)、B(3,0)两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.
(3)如图②,直线y=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列运算正确的是(  )
A.(a2+2b2)-2(-a2+b2)=3a2+b2B.$\frac{{a}^{2}+1}{a-1}$-a-1=$\frac{2a}{a-1}$
C.(-a)3m÷am=(-1)ma2mD.6x2-5x-1=(2x-1)(3x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(  )
A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列运算可直接运用平方差公式的是(  )
A.(a+b)(-a+b)B.(a+b)(-a-b)C.(a+b)(b+a)D.(a-b)(b-a)

查看答案和解析>>

同步练习册答案