【题目】已知:如图1,射线OP∥AE,∠AOP的角平分线交射线AE于点B.
(1)若∠A=50°,求∠ABO的度数;
(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ABO-∠AOB=70°,求∠ADO的度数;
(3)如图3,若∠A=α,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,…,∠Bn-1OP的角平分线OBn,其中点B,B1,B2,…,Bn-1,Bn都在射线AE上,试求∠ABnO的度数.
【答案】(1)65°;(2)35°;(3)∠ABnO=.
【解析】
(1)根据平行线的性质得出∠A=∠1=50°,根据平角的定义求得∠AOP=130°,根据角平分线的性质和平行线的性质求得∠ABO=∠2=65°;
(2)因为∠ABO=∠ACO+∠BOC,∠ABO-∠AOB=70°,∠BOC=∠AOB,求得∠ACO=70°,根据平行线的性质求得∠COP=∠ACO=70°,进而即可求得∠ADO=35°.
(3)根据(1)(2)的规律即可求得.
(1)如图1,
∵OP∥AE,
∴∠A=∠1=50°,
∴∠AOP=130°,
∵∠2=∠AOB,
∴∠2=65°,
∴∠ABO=∠2=65°;
(2)如图2,∵∠ABO=∠ACO+∠BOC,∠ABO-∠AOB=70°
∴∠ACO+∠BOC-∠AOB=70°,
∵∠BOC=∠AOB,
∴∠ACO=70°,
∵OP∥AE,
∴∠COP=∠ACO=70°,∠POD=∠ADO,
∵∠POD=∠COD=∠COP=35°
∴∠ADO=35°.
(3)如图3,由(1)可知,∠ABO=(180°-α),∠AB1O=(180°-∠OBB1)=∠ABO=(180°-α),∠AB2O=(180°-α),…
则∠ABnO=.
科目:初中数学 来源: 题型:
【题目】学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:
(1)求本次共调查了多少学生?
(2)补全条形统计图;
(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】物理兴趣小组20位同学在实验操作中的得分情况如下表:(Ⅰ)求这组数据的众数、中位数;(Ⅱ)求这组数据的平均数;(Ⅲ)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
得分(分) | 10 | 9 | 8 | 7 |
人数(人) | 5 | 8 | 4 | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=.
(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.
(2)若A=×(1﹣3)2,B=|a|﹣b+c,试比较A和B的大小.
(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CB:BD=2:3,若AB=cm,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块直角三角板的直角顶点C叠放在一起.
(1)若∠DCE=28°10',求∠ACB的度数;
(2)若∠ACB=148°21',求∠DCE的度数;
(3)直接写出∠ACB与∠DCE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE= ,则CE的长为米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(结果精确到0.1m。参考数据:tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度数.
(2)求教学楼的高BD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有七个数﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m,如图2给出了一种填法,此时m=64,在所有的填法中,m的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组在研究函数y= x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)请补全函数图象;
(2)方程 x3﹣2x=﹣2实数根的个数为;
(3)观察图象,写出该函数的两条性质.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com