【题目】某“数学兴趣小组”根据学习函数的经验,对函数的图象和性质进行了探究,探究过程如下,请补充完整:
(1)该函数的自变量的取值范围是______;
(2)同学们先找到与的几组对应值,然后在下图的平面直角坐标系中,描出各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;
(3)结合画出的函数图象,写出该函数的一条性质:_______________.
科目:初中数学 来源: 题型:
【题目】如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.
(1)求证:OD⊥BE.
(2)若DE=,AB=6,求AE的长.
(3)若△CDE的面积是△OBF面积的,求线段BC与AC长度之间的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0) 与直线l2:y=ax+b(a≠0) 相交于点 A(1,2),直线l2与 x轴交于点B(3,0).
(1)分别求直线l1 和l2的表达式;
(2)过动点P(0,n)且平行于x轴的直线与l1 ,l2的交点分别为C ,D,当点 C 位于点 D 左方时,写出 n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,D是BC边的中点,连接AD,过点A作AE∥BC,且AE=CD,连接EC.
(1)求证:四边形ADCE是菱形;
(2)如果,,写出求菱形ADCE的面积的思路.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC,A点的坐标为(5,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,交AB于F点,连接OF交AC于M,且OBAC=40.有下列四个结论:①k=8;②CE=1;③AC+OB=6;④S△AFM:S△AOM=1:3.其中正确的结论是( )
A. ①②B. ①③C. ①②③D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=2x+l与双曲线y=的一个交点为A(m,-3).
(1)求双曲线的表达式;
(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+l和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形 ABCD 中,E 为直线 AB 上的动点(不与 A、B 重合),作射线 DE 并绕点 D 逆时针旋转 45°,交直线 BC 于点 F,连接 EF.
探究:当点 E 在边 AB 上,求证:EF=AE+CF.
应用:(1)当点 E 在边 AB 上,且 AD=2 时,求△BEF 的周长;
(2)当点 E 在 BA 延长线上时,判断 EF,AE,CF 三者的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com