精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连CD,下列五个结论:
①AC+CE=AB,②BD=$\frac{1}{2}AE$,③BD=CD,④∠ADC=45°,⑤AB-BC=2MC;
其中不正确结论的个数有(  )
A.0个B.1个C.2个D.3个

分析 过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DM=DH,根据勾股定理求出AC=AQ,AM=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出①;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②④;证△DCM≌△DBH,得到CM=BH,AM=AH,即可求出⑤.

解答 解:如图,过E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,AC=BC
∴AB=AQ+BQ=AC+CE=BC+CE,
∴①正确;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=$\frac{1}{2}$∠CAB=22.5°=∠BAD,
∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD,
∴∠DBC=∠CAD,
在△ACN和△BCD中,
$\left\{\begin{array}{l}{∠CAD=∠DBC}\\{AC=BC}\\{∠ACN=∠DCB}\end{array}\right.$
∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=$\frac{1}{2}$AE,
∵AN=BD,
∴BD=$\frac{1}{2}$AE,
∴②正确,④正确;
过D作DH⊥AB于H,
∵∠MCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠MCD=∠DBA,
∵AE平分∠CAB,DM⊥AC,DH⊥AB,
∴DM=DH,
在△DCM和△DBH中
$\left\{\begin{array}{l}{∠M=∠DHB=90°}\\{∠MCD=∠DBA}\\{DM=DH}\end{array}\right.$,
∴△DCM≌△DBH,
∴BH=CM,BD=CD,
∴③正确;
过D作DH⊥AB于H,
∵∠MCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠MCD=∠DBA,
∵AE平分∠CAB,DM⊥AC,DH⊥AB,
∴DM=DH,
在△DCM和△DBH中
$\left\{\begin{array}{l}{∠M=∠DHB=90°}\\{∠MCD=∠DBA}\\{DM=DH}\end{array}\right.$,
∴△DCM≌△DBH,
∴BH=CM,
由勾股定理得:AM=AH,
∴$\frac{AC+AB}{AM}=\frac{AC+AH+BH}{AM}=\frac{AC+AM+CM}{AM}$=$\frac{2AM}{AM}$=2,
∴AC+AB=2AM,
AC+AB=2AC+2CM,
AB-AC=2CM,
∵AC=CB,
∴AB-CB=2CM,
∴⑤正确.
错误的有0个.
故选:A.

点评 本题主要考查了三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.画出函数y=-x+2的图象,根据图象解答下列问题:
(1)当x=-2时,求y的值;
(2)当y=-1时,求x的值;
(3)求方程-x+2=0的解;
(4)求方程-x+2=1的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程
(1)(x-1)2-(x-1)(x+5)=17
(2)已知a、b满足$\sqrt{2a+8}$+|b-$\sqrt{3}$|=0,解关于x的方程(a+2)x+b2=a-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,CD⊥AB于点D,sin∠BCD=(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列事件是必然事件的是(  )
A.抛掷一枚硬币,落地时正面朝上B.任意打开数学教科书,正好是58页
C.两个负数相乘,结果为正数D.两个无理数相加,结果仍是无理数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某电子商铺购进一批电子配件,其进价为每件40元,按每件60元出售,平均每天可售出100件,经过市场调查发现,单价每降低2元,平均每天的销售量可增加20件.现在该商铺要尽快减少库存,采取降价措施,并且平均每天获利2240元,那么每件应定价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如果一个二元一次方程的一个解是$\left\{\begin{array}{l}x=5\\ y=7\end{array}$,请你写出一个符合题意的二元一次方程2x+3y=31.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知点A(x1,y1),B(x2,y2)是反比例函数y=$\frac{k}{x}$(k≠0)的图象上的两点,且当x1<x2<0时,y1<y2,则函数y=kx2-k与y=$\frac{k}{x}$(k≠0)在同一直角坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案