| A. | 菱形 | B. | 矩形 | C. | 梯形 | D. | 正方形 |
分析 根据四边形的两条对角线相等,由三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.
解答 解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,![]()
则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,
根据三角形的中位线的性质知,EH=FG=$\frac{1}{2}$BD,EF=HG=$\frac{1}{2}$AC,
∵AC=BD,
∴EH=FG=FG=EF,
∴四边形EFGH是菱形.
故选:A.
点评 本题考查了中点四边形,三角形的中位线定理,难度中等,需要掌握三角形的中位线平行于第三边,并且等于第三边的一半,另外要知道四边相等的四边形是菱形.
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{a}$ | B. | 2$\sqrt{b}$ | C. | a-b | D. | a+b |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 次数x | 余额y(元) |
| 1 | 100-1.6 |
| 2 | 100-3.2 |
| 3 | 100-4.8 |
| 4 | 100-6.4 |
| … | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com