【题目】阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图1中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1 cm的正方形被一个半径为r的圆所覆盖,r的最小值是______ cm;
(2)边长为1 cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是_____ cm;
(3)长为2 cm,宽为1 cm的矩形被两个半径均为r的圆所覆盖,r的最小值是_____ cm.这两个圆的圆心距是_____ cm.。
【答案】(1) ;
(2);
(3) , 1.
【解析】试题分析:(1)边长为1 cm的正方形被一个半径为r的圆所覆盖,则r应大于等于正方形对角线的一半,即半径最小为;(2)当圆外接三角形时圆的半径最小,如图,根据勾股定理可求得圆的半径是;(3)根据对称性可知两圆的交点分别是AD和BC的中点,将矩形分成两个相等的小正方形,圆的最小半径就是小正方形的对角线的一半,圆心距就是小正方形的边长.
(1)以正方形的对角线为直径做圆是覆盖正方形的最小圆,半径r的最小值=;
(2) 边长为1 cm的等边三角形被一个半径为r的圆所覆盖,这个最小的圆是正三角形的外接圆,如图作三角形ABC的高AD构成直角三角形ABD,斜边AB=1,BD=,
所以AD=,因为三角形是正三角形,
所以∠ABC=60°,O是外心,所以∠OBC=30°,OD=OB,
设OA=OB=x,则OD=x,
在直角三角形OBD中,根据勾股定理列方程:,
解得:x=.
(3)如图:矩形ABCD中AB=1,BC=2,
则覆盖ABCD的两个圆与矩形交于E、F两点,
由对称性知E、F分别是AD和BC的中点,
则四边形ABFE、EFCD是两个边长为1的正方形,
所以圆的半径r=, 两圆心距= 1.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点, , .下列说法正确的是( )
A. △与△ABC是位似图形,位似中心是点(1,0)
B. △与△ABC是位似图形,位似中心是点(0,0)
C. △与△ABC是相似图形,但不是位似图形
D. △与△ABC不是相似图形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | |||
乙 | 1 |
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读解题过程,回答问题.
如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.
解:过O点作射线OM,使点M,O,A在同一直线上.
因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
① ∵
∴ ______// _____(______________________)
② ∵∠DAB+∠ABC=180°
∴ _____// _____(__________________)
③∵ AB // CD
∴∠_____+∠ABC=180°(___________________)
④∵ ______// ______
∴∠C=∠3(_______________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com