分析 (1)根据等腰三角形三线合一的性质可得∠CBE=$\frac{1}{2}$∠ABC=30°,AE=CE,所以CE=CF,然后根据等边对等角的性质可得∠F=∠CEF,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠F=30°,从而得到∠CBE=∠F,根据等角对等边的性质即可证明;
(2)图2,过点E作EG∥BC,交AB于点G,根据菱形的性质结合∠ABC=60°可得△ABC是等边三角形,然后根据等边三角形的性质得到AB=AC,∠ACB=60°,再求出△AGE是等边三角形,根据等边三角形的性质得到AG=AE,从而可以求出BG=CE,再根据等角的补角相等求出∠BGE=∠ECF=120°,然后利用“边角边”证明△BGE和△ECF 全等,根据全等三角形对应边相等即可得证;
(3)图3,证明思路与方法与图2完全相同.
解答
(1)答:猜想BE与EF的数量关系为:BE=EF;
证明:(1)∵△ABC是等边三角形,E是线段AC的中点,
∴∠CBE=$\frac{1}{2}$∠ABC=30°,AE=CE,
∵AE=CF,
∴CE=CF,
∴∠F=∠CEF,
∵∠F+∠CEF=∠ACB=60°,
∴∠F=30°,
∴∠CBE=∠F,
∴BE=EF;
(2)答:猜想BE=EF.
证明如下:如图2,过点E作EG∥BC,交AB于点G,
∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等边三角形,
∴AG=AE,
∴BG=CE,
又∵CF=AE,
∴GE=CF,
在△BGE与△ECF中,
$\left\{\begin{array}{l}{BG=CE}\\{∠BGE=∠ECF=120°}\\{GE=CF}\end{array}\right.$,
∴△BGE≌△ECF(SAS),
∴BE=EF;
(3)BE=EF.
证明如下:如图3,过点E作EG∥BC交AB延长线于点G,
∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等边三角形,
∴AG=AE,
∴BG=CE,
又∵CF=AE,
∴GE=CF,
又∵∠BGE=∠ECF=60°,
在△BGE与△ECF中,
$\left\{\begin{array}{l}{BG=EC}\\{∠BGE=∠ECF=60°}\\{GE=CF}\end{array}\right.$,
∴△BGE≌△ECF(SAS),
∴BE=EF.
点评 本题考查了等边三角形的判定与性质,全等三角形的判定与性质,作出辅助线,利用等边三角形的性质找出全等的条件是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 随机掷一枚质地均匀的硬币,正面朝上 | |
| B. | 播下一颗种子,种子一定会发芽 | |
| C. | 买100张中奖率为1%的彩票一定会中奖 | |
| D. | 400名同学中,一定有两个人生日相同 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 同时到达 | D. | 与路程有关 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①和③ | B. | ②和④ | C. | ①和② | D. | ③和④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com