精英家教网 > 初中数学 > 题目详情

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

【答案】C
【解析】解:∵点A坐标为(0,a),

∴点A在该平面直角坐标系的y轴上,

∵点C、D的坐标为(b,m),(c,m),

∴点C、D关于y轴对称,

∵正五边形ABCDE是轴对称图形,

∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,

∴点B、E也关于y轴对称,

∵点B的坐标为(﹣3,2),

∴点E的坐标为(3,2).

故答案为:C.

由题意得出y轴的位置,由正五边形ABCDE是轴对称图形,根据关于y轴对称点的坐标特点,即可求出点E的坐标。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图1是等边三角形上一动点(点)与点不重合,连接,以为边在上方作等边三角形,连接,你能发现之间的数量关系吗?并证明你发现的结论.

2)如图二,当动点在等边三角形上运动时(点与点不重合),连接,以为边在其上方、下方分别作等边三角形和等边三角形,连接,探究有何数量关系?并证明你探究的结论.

3)如图三,当动点在等边三角形的延长线上运动时,其他作法与图2相同,若,请直接写出    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点在直线上,,则的度数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线 交于A、B两点,点A在x轴上,点B的横坐标为 .动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.

(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图,在直角三角形ABC中,BAC=90°,ADBC于点D,可知:BAD=C(不需要证明);

特例探究:如图MAN=90°,射线AE在这个角的内部,点B、C在MAN的边AM、AN上,且AB=AC, CFAE于点F,BDAE于点D.证明:ABD≌△CAF;

归纳证明:如图,点BC在MAN的边AM、AN上,点EF在MAN内部的射线AD上,1、2分别是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求证:ABE≌△CAF;

拓展应用:如图,在ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC.若ABC的面积为15,则ACF与BDE的面积之和为 .(12分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1个单位的正方形网格图中,建立了平面直角坐标系xOy,按要求解答下列问题:

(1)写出△ABC三个顶点的坐标;

(2)画出△ABC向右平移6个单位后得到的图形△A1B1C1

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AMBN,A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AMC、D.

(1)求∠CBD的度数;

(2)当点P运动时,那么∠APB:ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;

(3)当点P运动到使∠ACB=ABD时,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车沿同一平直公路由地匀速行驶(中途不停留),前往终点地,甲、乙两车之间的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示。下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶小时,其中正确的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案