精英家教网 > 初中数学 > 题目详情

【题目】如图,MON=ɑ0°<ɑ<180°,A.B分别在OMON上运动(不与点O重合).

(1)如图1,MON=90°BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.

①若∠BAO=60°,则∠D=___.

②猜想:∠D的度数是否随AB的移动发生变化?并说明理由。

(2)如图2,∠MON=α(0°<α<180°)”,ABC=ABN,BAD=BAO,其余条件不变,则∠D=___°(用含αn的代数式表示)

【答案】45D的度数不随AB的移动发生变化;

【解析】

1)①根据邻补角的定义及角平分线定义求出∠BAD =30°,∠ABC =75°,然后根据三角形外角的性质可求出∠D;②设∠BAO=x,步骤同①可得∠D的度数不随AB的移动发生变化;

2)根据三角形外角的性质可得∠D=ABC-BAD,然后将∠ABC=ABN,BAD=BAO代入化简,即可得出结果.

解:(1)①∵∠MON=90°,∠BAO=60°

∴∠ABO=30°,∠BAD=BAO =30°

∴∠ABN=150°

∴∠ABC=ABN=75°

∴∠D=ABC-BAD=45°

②∠D的度数不随AB的移动发生变化;

理由:设∠BAO=x

∴∠ABO=90°-x,∠BAD=BAO=

∴∠ABN=180°-90°-x=90°+x

∴∠ABC=ABN=45°+

∴∠D=ABC-BAD=45°+-=45°

∴∠D的度数不随AB的移动发生变化;

2)∵∠MON=α,∠ABC=ABN,BAD=BAO

∴∠D=ABC-BAD=ABN-BAO=(ABN-BAO)=MON=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,中,边上的中线,过,垂足为,过的延长线于,则下列结论正确的是______.(请填写序号)

①若,则;②;③;④;⑤;⑥连接,则.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,点AC在坐标轴上,B点坐标(-2,4)ODEOCB绕点O顺时针旋转90°得到的,点Dx轴上,直线BDy轴于点F,交OE于点H.

(1) 求直线BD的解析式;

(2) BCF的面积;

(3) M在坐标轴上,平面内是否存在点N,使以点DFMN为顶点的四边形是矩形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)若AD=3,BE=4,求EF的长;

(2)求证:CE=EF;

(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A、B、C、D、E、F分别藏在六张大纸牌的后面,如图,A、B、C、D、E、F所持的纸牌的前面分别写有六个算式:66;63+63;(633;(2×62)×(3×63);(22×323;(643÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A来找他的朋友,他可以找谁呢?说说你的看法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D在△ABC的边BC上,DC=2BD,连接AD与△ABC的中线BE交于点F,连接CF,若△ABC的面积为24,则△AEF的面积为( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据: ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在正方形ABCD中.

1)如图1,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,试判断AEBF的数量关系,并说明理由;

2)如图2,点EFGH分别在边BCCDDAAB上,EGFH相交于点O,∠GOH=90°,且EG=7,求FH的长;

3)如图3,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为45,求△ABO的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.

(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;

(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?

查看答案和解析>>

同步练习册答案