【题目】如图,在Rt△ABC中,∠ACB=90°,点D,E分别为AB,AC的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE,连接AF,CD.
(1)四边形ADCF是什么特殊的四边形?说明理由;
(2)若BC=8,AC=6,求四边形ABCF的周长.
【答案】(1)四边形ADCF是菱形,见解析;(2)28
【解析】
(1)利用对角线相互平分,证四边形是平行四边形,再证临边相等得菱形;
(2)在Rt△ABC中,利用勾股定理求AB的长,从而求出AD的长;根据菱形的性质,就可得AF、FC的长,再加上BC即为ABCF的周长
(1)四边形ADCF是菱形,
理由是:由旋转180°可知:
AC与DF互相平分.
∴四边形ADCF是平行四边形.
∵点D为Rt△ABC的斜边AB的中点,
∴CD=AD=AB.
∴四边形ADCF是菱形.
(2)在Rt△ABC中,
=
∴AD=AB=10×=5.
又∵四边形ADCF是菱形.
∴AF=CF=AD=5.
∴AB+BC+CF+AF=10+8+5+5=28.
即四边形ABCF的周长为28.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+2mx+3m2与x轴相交于点B、C(点B在点C的左侧),与y轴相交于点A,点D为抛物线的顶点,抛物线的对称轴交x轴于点E.
(1)如图1,当AO+BC=7时,求抛物线的解析式;
(2)如图2,点F是抛物线的对称轴右侧一点,连接BF、CF、DF,过点F作FH∥x轴交DE于点H,当∠BFC=∠DFB+∠BFH=90°时,求点H的纵坐标;
(3)如图3,在(1)的条件下,点P是抛物线上一点,点P、点A关于直线DE对称,点Q在线段AP上,过点P作PR⊥AP,连接BQ、QR,满足QB平分∠AQR,tan∠QRP=,点K在抛物线的对称轴上且在x轴下方,当CK=BQ时,求线段DK的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AC=,∠ACB=45°,tanB=3,过点A作BC的平行线,与过C且垂直于BC的直线交于点D,一个动点P从B出发,以每秒1个单位长度的速度沿BC方向运动,过点P作PE⊥BC,交折线BA-AD于点E,以PE为斜边向右作等腰直角三角形PEF,设点P的运动时间为t秒(t>0).
(1)当点F恰好落在CD上时,此时t的值为 ;
(2)若P与C重合时运动结束,在整个运动过程中,设等腰直角三角形PEF与四边形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出自变量t的取值范围;
(3)如图2,在点P开始运动时,BC上另一点Q同时从点C出发,以每秒2个单位长度沿CB方向运动,当Q到达B点时停止运动,同时点P也停止运动,过Q作QM⊥BC交射线CA于点M,以QM为斜边向左作等腰直角三角形QMN,若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一直线上,请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数 y kx b k 0的图象与反比例函数 y m 0的图象交于 A (-1,-1),B (n,2)两点.
(1)求反比例函数和一次函数的表达式;
(2)点 P 在 x 轴上,过点 P 做垂直于 x 轴的直线 l,交直线 AB 于点 C,若AB=2AC,请直接写出点 C 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB的端点均在格点上. 按要求在图①,图②,图③中画图.
(1)在图①中,以线段AB为斜边画一个等腰直角三角形,且直角的顶点为格点;
(2)在图②中,以线段AB为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;
(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD 是菱形ABCD 的对角线,∠A=30°.
(1)请用尺规作图法,作AB 的垂直平分线EF,垂足为E,交AD 于F;(不要 求写作法,保留作图痕迹)
(2)在(1)的条件下,连接BF,求∠DBF 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F.下列说法正确的是( )
A.b=5
B.BC=AD
C.五边形CDFOE的面积为35
D.当x<﹣2时,y1>y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com