精英家教网 > 初中数学 > 题目详情
9.如图,在以△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过点D作PE⊥BC交BC于点E,交AB的延长线于点P.
(1)判断直线PE与⊙O的位置关系,并说明理由;
(2)若PA=1,∠B=30°,求⊙O的半径.

分析 (1)连结OD,如图,根据等腰三角形的性质得∠1=∠C,∠1=∠2,则∠2=∠C,于是可判断OD∥BC,再利用PE⊥BC可得PE⊥OD,然后根据切线的判定定理得到结论;
(2)设⊙O的半径为r,根据平行线的性质得∠POD=∠B=30°,然后利用余弦定义得到即$\frac{\sqrt{3}}{2}$=$\frac{r}{r+1}$,再解方程求出r即可.

解答 解:(1)直线PE与⊙O相切.理由如下:
连结OD,如图,
∵AB=CB,
∴∠1=∠C,
∵OD=OA,
∴∠1=∠2,
∴∠2=∠C,
∴OD∥BC,
∵PE⊥BC,
∴PE⊥OD,
∴直线PE为⊙O的切线;
(2)设⊙O的半径为r,
∵OD∥BC,
∴∠POD=∠B=30°,
在Rt△POD中,cos∠POD=$\frac{OD}{OP}$,
即$\frac{\sqrt{3}}{2}$=$\frac{r}{r+1}$,解得r=2$\sqrt{3}$+3,
即⊙O的半径为2$\sqrt{3}$+3.

点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(1)小题的关键是证明OD∥BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,AB=AC=10,BC=16,点P为BC边上的一个动点,以P为圆心的⊙P与边AB相切于点D.在点P移动的过程中,△APC如果成为等腰三角形,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知∠1=98°,∠2=∠3=82°,试说明:a∥b,c∥d.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知AB是⊙O的直径,P为BA延长线上一点,PC切⊙O于C,若⊙O的半径是4cm,∠P=30°,图中阴影部分的面积是8$\sqrt{3}$-$\frac{8}{3}π$(cm2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算题
(1)$4\sqrt{5}+\sqrt{45}-\sqrt{8}+4\sqrt{2}$     (2)($\sqrt{2}-\sqrt{3}$)+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连结AC,BC.作∠APC的平分线交AC于点D,交BC于点E.
(1)求证:△CED为等腰直角三角形;
(2)若∠CPA=30°,求$\frac{PD}{PE}$,$\frac{BE}{AD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,以BC为直径画⊙O,交斜边AB于点E,点D为AC中点,连接OD,DE.
(1)求证:DE是⊙O的切线;
(2)已知AC=6,tan∠ABC=$\frac{3}{4}$,则△ADE的周长是$\frac{48}{5}$,其面积是$\frac{54}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知:如图正方形ABCD中,点E、F分别是边AB和BC上的点,且满足BE=CF.
(1)不用圆规,请只用不带刻度的直尺作图:在边CD和DA上分别作出点G和点H,使DG=AH=BE=CF(保留作图痕迹,不要求写作法)
(2)在(1)的条件下,当点E在AB边上的何处时,能使S四边形EFGH:S四边形ABCD=5:8,并说明理由.
(3)如图:正六边形ABCDEF中,点A′、B′、C′、D′、E′、F′分别是边AB、BC、CD、DE、EF、FA上的点,且AA′=BB′=CC′=DD′=EE′=FF′.
①设AA′:A′B=1:3,则S六边形A′B′C′D′E′F′:S六边形ABCDEF=13:16
②设AA′:A′B=k,求S六边形A′B′C′D′E′F′:S六边形ABCDEF的值(用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某校七年级有200名学生参加了全国中小学生安全知识竞赛初赛,为了了解本校初赛的成绩情况,从中抽取了50名学校,将他们的初赛成绩(得分为整数,满分100分)分成五组:
第一组49.5-59.5;第二组59.5-69.5;第三组69.5-79.5;第四组79.5-89.5;第五组89.5-100.5.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:
(1)第四组的频数为2(直接写答案);
(2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5-69.5分评分“C”,69.5-89.5分评为“B”,89.5-100.5分评为“A”,那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有64个(直接填空答案).
(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛,用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.

查看答案和解析>>

同步练习册答案