分析 由∠1=∠2可得AC=CE,再加上AB=CD,AB⊥BD,ED⊥CD,可直接证明三角形ABC与三角形CDE全等,从而易得三角形ACE是等腰直角三角形.
解答 解:∵∠1=∠2,
∴AC=CE,
∵AB⊥BD,ED⊥CD,
在△ABC与△CDE中,
$\left\{\begin{array}{l}{AC=CE}\\{AB=CD}\end{array}\right.$,
∴△ABC≌△CDE,
∴∠ACB=∠CED,
∵∠CED+∠ECD=90°,
∴∠ACD+∠ECD=90°,
∴∠ACE=90°,
∴△ACE是等腰直角三角形.
点评 本题主要考查了“HL”定理的应用,全等三角形的性质,等腰直角三角形的判定与性质,属于基础题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | Q=0.5t | B. | Q=15t | C. | Q=15+0.5t | D. | Q=15-0.5t |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com