精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,如图1,抛物线yax2+bx+c的对称轴为,与x轴的交点A(﹣10)与y轴交于点C0,﹣2).

1)求抛物线的解析式;

2)如图2.点P是直线BC下方抛物线上的一点,过点PBC的平行线交抛物线于点Q(点Q在点P右侧),连结BQ,当△PCQ的面积为△BCQ面积的一半时,求P点的坐标;

3)现将该抛物线沿射线AC的方向进行平移,平移后的抛物线与直线AC的交点为A'、C'(点C'在点A'的下方),与x轴的交点为B',当△AB'C'与△AA'B'相似时,求出点A′的横坐标.

【答案】1 ;(2)点P1,﹣3);(3)点A′的横坐标为

【解析】

1)由对称性可知B40),设抛物线解析式为yax+1)(x4),由待定系数法可求得抛物线的解析式;

2)由平行线间距离处处相等可知,当PCQ的面积为BCQ面积的一半时,可求相关线段的长,再求得BC的解析式,将其与抛物线解析式联立可解;

3)由平移的相关知识,结合图形分析,得出方程组,从而得解.

解:(1)由对称性可知B40

设抛物线解析式为yax+1)(x4

将(0,﹣2)代入得a

yx2x2

2)由平行线间距离处处相等可知,当PCQ的面积为BCQ面积的一半时,PQBC

C0,﹣2),B40

BC

PQ

PQ25

∵直线BC的解析式为yx2PQBC

∴设直线PQ的解析式为yx+b

yPxP+byQyxQ+b

联立

x24x42b0

xP+xQ4

PQ25

5xQxP2

∴点P1,﹣3

3)由点A(﹣10),C0,﹣2)得直线AC的解析式为y=﹣2x2

设点A'坐标为(a,﹣2a2),由平移的性质,可知ACA'C'

平移距离为AA'a+1

AC'a+2

AB'C'AA'B'相似时,只有当AB'C'∽△AA'B'

AB'2AA'×AC'5a+1)(a+2

过点B'AA'的平行线,交原抛物线于点D,连接AD

由平移知四边形ADB'A'为平行四边形,点D的纵坐标为2a+2

设点D的横坐标为m,则点B'坐标为(m+a+10

AB'2=(m+a+225a+1)(a+2),①

将点Dm2a+2)代入y x2x2

22a+2,②

联立①②,解得:a

m29m+150

m ,或m(舍)

a═

∴点A′的横坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于二次函数,以下结论:①抛物线交轴有两个不同的交点;②不论取何值,抛物线总是经过一个定点;③设抛物线交轴于两点,若,则④抛物线的顶点在图象上;⑤抛物线交轴于点,若是等腰三角形,则.其中正确的序号是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车1月份销售总额为50000元,2月份销售总额将比1月份减少20%,每辆销售价比1月份降低400元,若这两个月卖出的数量相同。

1)求2月份A型车每辆售价多少元?

2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元?

AB两种型号车今年的进货和销售价格表:

A型车

B型车

进货价格(元)

1100

1400

销售价格(元)

2月份的销售价格

2000

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= -2x和反比例函数的图象交于Aa,-4,B两点。过原点O的另一条直线l与双曲线交于点P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣x+m的图象与反比例函数的图象交于AB两(点A在点B的左侧),点Px轴上一动点,当有且只有一个点P,使得∠APB90°,则m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.

(1) 如图1,当点D在线段BC上时:

①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;

(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的两边分别在轴、轴上,点在边上,以为中心,把绕点顺时针旋转,则旋转后点的对应点的坐标是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市拟于中秋节前天里销售某品牌月饼,其进价为/.设第天的销售价格为(元/),销售量为.该超市根据以往的销售经验得出以下的销售规律:①当时,;当时,满足一次函数关系,且当时,时,.②的关系为

1)当时,的关系式为   

2为多少时,当天的销售利润(元)最大?最大利润为多少?

3)若超市希望第天到第天的日销售利润(元)随的增大而增大,则需要在当天销售价格的基础上涨/,求的最小值.

查看答案和解析>>

同步练习册答案