【题目】如图,在菱形ABCD中,连接BD,点E在AB上,连接CE交BD于点F,作FG⊥BC于点G,∠BEC=3∠BCE,BF=DF,若FG=,则AB的长为_____.
【答案】
【解析】
连接AC交BD于M,设BF=5a,根据菱形的性质及∠BEC=3∠BCE得到CF平分∠ACB,根据勾股定理求出BF=,BM=2,证明Rt△FMC≌Rt△FGC得到CG=CM,利用勾股定理求出BG,设CG=CM=x,则BC=x+1,再利用勾股定理求出x即可得到答案.
解:连接AC交BD于M,如图所示:
设BF=5a,则DF=11a,
∴BD=16a,
∵四边形ABCD是菱形,
∴AC⊥BD,∠ACB=∠ACD,AB=BC,AB∥CD,BM=DM=BD=8a,
∴FM=BM﹣BF=3a,
∵AB∥CD,
∴∠BEC=∠ECD,
∵∠BEC=3∠BCE,
∴∠ECD=3∠BCE,
∴∠ACE=∠BCE,
∴CF平分∠ACB,
∵FG⊥BC,FM⊥AC,
∴FG=FM=,
∴3a=,
∴a=,
∴BF=,BM=2,
在Rt△FMC和Rt△FGC中,,
∴Rt△FMC≌Rt△FGC(HL),
∴CG=CM,
在Rt△BFG中,BG==1,
设CG=CM=x,则BC=x+1,
在Rt△BMC中,由勾股定理得:22+x2=(x+1)2,
解得:x=,
∴AB=BC=.
科目:初中数学 来源: 题型:
【题目】抗击疫情,众志成城,举国上下,共克时艰.为确定应对疫情影响稳外贸稳外资的新举措,国务院总理李克强 3 月 10 日主持召开国务院常务会议,要求更好发挥专项再贷款再贴 现政策作用,支持疫情防控保供和企业纾困发展.会议指出,近段时间,有关部门按照国务 院要求,引导金融机构实施亿元专项再贷款政策,以优惠利率资金有力支持了疫情防 控物资保供、农业和企业特别是小微企业复工复产.要进一步把政策落到位,加快贷款投放 进度,更好保障防疫物资保供、春耕备耕、国际供应链产品生产、劳动密集型产业、中小微 企业等资金需求.数据亿元用科学记数法表示为( )
A.元B.元C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司投入研发费用40万元(40万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为4元/件.此产品年销售量y(万件)与售价x(元件)之间满足函数关系式y=﹣x+20.
(1)求这种产品第一年的利润W(万元)与售价x(元件)满足的函数关系式;
(2)该产品第一年的利润为24万元,那么该产品第一年的售价是多少?
(3)第二年,该公司将第一年的利润24万元(24万元只计入第二年成本)再次投入研发,使产品的生产成本降为3元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过10万件.请计算该公司第二年的利润W2至少为多少万元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0).P为该抛物线上一动点,设点P的横坐标为m.
(1)求抛物线的解析式.
(2)将该抛物线沿y轴向下平移AB个单位长度,点P的对应点为P′,若OP=OP′,求△OP P′的面积.
(3)如图2,连接AP,BP,设△APB的面积为S,当-2≤m≤2时,直接写出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018无锡市体育中考男生项目分为速度耐力类、力量类和灵巧类,每位考生只能在三类中各选一项进行考试.其中速度耐力类项目有:50米跑、800米跑、50米游泳;力量类项目有:掷实心球、引体向上;灵巧类项目有:30秒钟跳绳、立定跳远、俯卧撑、篮球运球.男生小明“50米跑”是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.
(1)请用画树状图或列表的方法求“小明‘选50米跑、引体向上和立定跳远’”的概率;
(2)小明所选的项目中有立定跳远的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图像过点,,与轴交于另一点,且对称轴是直线.
(1)求该二次函数的解析式;
(2)若是上的一点,作交于,当面积最大时,求的坐标;
(3)是轴上的点,过作轴,与抛物线交于,过作轴于.当以、、为顶点的三角形与、、为顶点的三角形相似时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】横卧于清波之上的黄石大桥与已经贯通的五峰山隧道将成为恩施城区跨越东西方向的最大直线通道,它把六角亭老城区与知名景点女儿城连为一体,缓解了恩施城区交通拥堵的现状.如图,某数学兴趣小组利用无人机在五峰山隧道正上空点P处测得黄石大桥西端点A的俯角为30°,东端点B(隧道西进口)的俯角为45°,隧道东出口C的俯角为22°,已知黄石大桥AB全长175米,隧道BC的长约多少米(计算结果精确到1米)?(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com