精英家教网 > 初中数学 > 题目详情

如图所示,已知平面直角坐标系xOy,抛物线过点A(4,0)、B(1,3)

【小题1】求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
【小题2】记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

已知函数的图象如图所示,则下列结论中:①;②;③;④.正确的是              

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为   

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为     米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

二次函数y=﹣2(x﹣5)2+3的顶点坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,作菱形BDEC,使其对角线在坐标轴上,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求抛物线的解析式;
(2)将抛物线向上平移n个单位,使其顶点在菱形BDEC内(不含菱形的边),求n的取值范围;
(3)当点P在线段OB上运动时,直线l交BD于点M.试探究m为何值时,四边形CQMD是平行四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标平面内,直线轴和轴分别交于A、B两点,二次函数的图象经过点A、B,且顶点为C.

(1)求这个二次函数的解析式;
(2)求的值;
(3)若P是这个二次函数图象上位于轴下方的一点,且ABP的面积为10,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为   ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为   ,此时AE与BF的数量关系是   
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案