综合与探究:
如图,抛物线y=
x2-
x-4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
![]()
(1)点A的坐标为(-2,0),点B的坐标为(8,0).点C的坐标为(0,-4).(2)4.平行四边形,理由见解析;(3)Q1(-2,0);Q2(6,-4).
【解析】
试题分析:(1)根据坐标轴上点的特点,可求点A,B,C的坐标.
(2)由菱形的对称性可知,点D的坐标,根据待定系数法可求直线BD的解析式,根据平行四边形的性可得关于m的方程,求得m的值;再根据平行四边形的判定可得四边形CQBM的形状;
(3)分DQ⊥BD,BQ⊥BD两种情况讨论可求点Q的坐标.
试题解析:(1)当y=0时,
x2-
x-4=0,解得x1=-2,x2=8,
∵点B在点A的右侧,
∴点A的坐标为(-2,0),点B的坐标为(8,0).
当x=0时,y=-4,
∴点C的坐标为(0,-4).
(2)由菱形的对称性可知,点D的坐标为(0,4).
设直线BD的解析式为y=kx+b,则
,
解得k=-
,b=4.
∴直线BD的解析式为y=-
x+4.
∵l⊥x轴,
∴点M的坐标为(m,-
m+4),点Q的坐标为(m,
m2-
m-4).
如图,当MQ=DC时,四边形CQMD是平行四边形,
∴(-
m+4)-(
m2-
m-4)=4-(-4).
化简得:m2-4m=0,
解得m1=0(不合题意舍去),m2=4.
∴当m=4时,四边形CQMD是平行四边形.
此时,四边形CQBM是平行四边形.
∵m=4,
∴点P是OB的中点.
∵l⊥x轴,
∴l∥y轴,
∴△BPM∽△BOD,
∴
,
∴BM=DM,
∵四边形CQMD是平行四边形,
∴DM∥CQ,DM=CQ
∴BM∥CQ,BM=CQ,
∴四边形CQBM是平行四边形.
(3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4).
若△BDQ为直角三角形,可能有三种情形,如图2所示:
![]()
以点Q为直角顶点.
此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.
∵P在线段EB上运动,
∴-8≤xQ≤8,而由图形可见,在此范围内,圆与抛物线并无交点,
故此种情形不存在.
以点D为直角顶点.
连接AD,∵OA=2,OD=4,OB=8,AB=10,
由勾股定理得:AD=2
,BD=4
,
∵AD2+BD2=AB2,
∴△ABD为直角三角形,即点A为所求的点Q.
∴Q1(-2,0);
以点B为直角顶点.
如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=-y,OK=x,BK=8-x.
易证△Q2KB∽△BOD,
∴
,即
,整理得:y=2x-16.
∵点Q在抛物线上,
∴y=
x2-
x-4.
∴
x2-
x-4=2x-16,解得x=6或x=8,
当x=8时,点Q2与点B重合,故舍去;
当x=6时,y=-4,
∴Q2(6,-4).
考点:二次函数综合题.
科目:初中数学 来源:2013-2014学年江西省九年级下学期期中模拟考试数学试卷(解析版) 题型:解答题
如图是由相同的小正方形组成的网格,A、B两点都在小正方形的顶点上.现请你在图1、图2中各画一个以A、B、C、D为顶点的菱形.要求:
(1)顶点C、D在小正方的顶点上;
(2)工具只用无刻度的直尺;
(3)所画的两个菱形不全等.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省中考一模数学试卷(解析版) 题型:解答题
如图,二次函数
的图象与
轴交于
、
两点,与
轴交于
点,已知点
(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究
的外接圆的圆心位置,并求出圆心坐标;
(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;
(4)若点
是线段
下方的抛物线上的一个动点,求
面积的最大值以及此时点
的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省中考一模数学试卷(解析版) 题型:选择题
方程
的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.有两个实数根
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省苏州市高新区中考学二模数试卷(解析版) 题型:解答题
某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
问:年降水量为多少万立方米?每人年平均用水量多少立方米?
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省苏州市高新区中考学二模数试卷(解析版) 题型:填空题
如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线
经过点C交x轴于点E,双曲线
经过点D,则k的值为
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省盐城市亭湖区中考一模数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系中,已知点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(点P与F、G不重合),作PQ∥y轴与抛物线交于点Q.
(1)若经过B、E、C三点的抛物线的解析式为y=-x2+(2b-1)x+c-5,则b= ,c= (直接填空)
(2)①以P、D、E为顶点的三角形是直角三角形,则点P的坐标为 (直接填空)
②若抛物线顶点为N,又PE+PN的值最小时,求相应点P的坐标.
(3)连结QN,探究四边形PMNQ的形状:
①能否成为平行四边形
②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com