【题目】如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )
A. 2 B. 3 C. 4 D. 6
【答案】B
【解析】
作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=2,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=2,原式可得到B点坐标为(3,1),然后根据反比例函数图象上点的坐标特征计算k的值.
作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,2),∴AC=1,OC=2.
∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=2,∴B点坐标为(3,1),∴k=3×1=3.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=﹣x+m与x轴交于点A,直线l2:y=2x+n与y轴交于点B,与直线l1交于点P(2,2),则△PAB的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)的图象交于点M(a,4).
(1)求反比例函数y=(x>0)的表达式;
(2)若点C在反比例函数y=(x>0)的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)实践操作:尺规作图,不写作法,保留作图痕迹.
①作∠ABC的角平分线交AC于点D.
②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
(2)推理计算:四边形BFDE的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,连接DE,过点D作DF⊥DE交BE于点F,G为BE中点,连接AF,DG.
(1)如图1,若点F与点G重合,求证:AF⊥DF;
(2)如图2,请写出AF与DG之间的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛。两个队各选出的5名选手的决赛成绩(满分为100分)如下图所示.
(1)根据图示填写图表;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
平均数(分) | 中位数(分) | 众数(分) | |
小学部 | 85 | ||
初中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com