【题目】下面是“作圆的内接正方形”的尺规作图过程。
已知:⊙O.
求作:圆的内接正方形.
如图,
(1)过圆心O作直线AC,与⊙O相交于A,C两点;
(2)过点O作直线BD⊥AC,交⊙O于B,D两点;
(3)连接AB,BC,CD,DA。
∴四边形ABCD为所求。
请回答:该尺规作图的依据是____________________________。(写出两条)
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,直角边为a、b,斜边为c.若把关于x的方程ax2+cx+b=0称为“勾系一元二次方程”,则这类“勾系一元二次方程”的根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 一定有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC 中,∠ACB=90°,D 是边 AB 上的中点,DE 平分∠CDB,且 DE=AC.
(1)求证:CE=AD;
(2)如果AC=BC,求证:四边形BECD 是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,按以下步骤作图:
第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;
第二步:作直线交于点,连接.
(1)是______三角形;(填“等边”、“直角”、“等腰”)
(2)若,则的度数为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,张老师在黑板上画出了一个,其中,让同学们进行探究.
(1)探究一:
如图2,小明以为边在内部作等边,连接,请直接写出的度数_____________;
(2)探究二:
如图3,小彬在(1)的条件下,又以为边作等边,连接.判断与的数量关系;并说明理由;
(3)探究三:
如图3,小聪在(2)的条件下,连接,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边和等腰,,.
(1)如图1,点在上,点在上,是的中点,连接,,则线段与之间的数量关系为 ;
(2)如图2,点在内部,点在外部,是的中点,连接,,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由.
(3)如图3,若点在内部,点和点重合,点在下方,且为定值,当最大时,的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:CD=BF;
(2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com