【题目】如图,抛物线与轴交于两点,对称轴与轴交于点,点,点,点是平面内一动点,且满足是线段的中点,连结.则线段的最大值是________________.
【答案】
【解析】
首先通过解方程得出点A的坐标,然后进一步根据抛物线性质得出点C为AB的中点,结合题意,利用勾股定理求出AQ,然后根据题意得出点P在以DE为直径的圆上,圆心Q点的坐标为(,0),圆Q的半径为2,然后延长AQ较圆Q于点F,得出此时AF最大,再连接AP,利用三角形中位线性质进一步求解即可.
解方程可得,,
则:点A坐标为(3,0),点B坐标为(5,0),
∵抛物线的对称轴与轴交于点C,
∴点C为AB的中点,
设DE的中点为Q,则Q点的坐标为(,0),
∴根据勾股定理可得:AQ=,
∵∠DPE=90°,
∴点P在以DE为直径的圆上,圆心Q点的坐标为(,0),圆Q的半径为2,
如图,延长AQ较圆Q于点F,此时AF最大,最大值为,
再连接AP,
∵点M是线段PB中点,
∴CM为△ABP的中位线,
∴CM=AP,
∴CM的最大值为:,
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是( ).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个演讲台的侧面示意图,支架是线段和弧,为台面,在水平地面上,.线段,,.
(1)求台面上点处的高度(结果精确到);
(2)如图2,若弧所在圆的圆心为点在的延长线上,且,求支架的长度(结果精确到).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点.
(1)求直线AB的解析式;
(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;
(3)设直线CD的解析式为,根据图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰中,,点,分别为,的中点,连接.在线段上任取一点,连接,.若,,设(当点与点重合时,的值为0),.
小明根据学习函数的经验,对函数随自变量的变换而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了与的几组值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
(说明:补全表格时,相关数值保留一位小数)
(参考数据:,,)
(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)函数的最小值为 (保留一位小数),此时点在图1中的什么位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】哈69中学为了组织一次球类对抗赛,在本校随机抽取了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,将调查结果整理后绘制成如图所示的不完整的统计图.
请你根据以上信息回答下列问题:
(1)求本次被调查的学生人数;
(2)通过计算补全条形统计图;
(3)若全校有4500名学生,请你估计该校最喜欢篮球运动的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强学生的疫情防控意识,响应“停课不停学”号召,某校组织了一次“疫情防控知识”专题网上学习,并进行了一次全校2500名学生都参加的网上测试.阅卷后,教务处随机抽取了100份答卷进行分析统计,发现考试成绩(分)的最低分为51分,最高分为满分100分,并绘制了如下不完整的统计图表.请根据图表提供的信息,解答下列问题:
分数段(分) | 频数(人) | 频率 |
0.1 | ||
18 | 0.18 | |
35 | 0.35 | |
12 | 0.12 | |
合计 | 100 | 1 |
(1)填空:________,________,________;
(2)将频数分布直方图补充完整;
(3)该校对成绩为的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为,请你估算全校获得二等奖的学生人数;
(4)结合调查的情况,为了提高疫情防控意识,请你给学校提一条合理性建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,对于某点P(P不是原点),称以点P为圆心,长为半径圆为点P的半长圆;对于点Q,若将点P的半长圆绕原点旋转,能够使得点Q位于点P的半长圆内部或圆上,则称点Q能被点P半长捕获(或点P能半长捕获点Q).
(1)在平面直角坐标系xoy中,点M(2,0),则点M的半长圆的面积为 ;下列各点,能被点M半长捕获的点有 ;
(2)已知点,
①点N(0,n),当t=1时,线段EF上的所有点均可以被点N半长捕获,求n的取值范围;
②若对于平面上的任意点(原点除外)都不能半长捕获线段EF上的所有点,直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com