【题目】如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=_____.
科目:初中数学 来源: 题型:
【题目】如图,在半径为5的⊙O中,弦AB=6,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备购进一批A、B两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一条直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s;EP与AB交于点G.同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s。过Q作QM⊥BD,垂足为H,交AD于M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:
(1)当 t 为何值时,PQ∥BD?
(2)设五边形 AFPQM 的面积为 y(cm2),求 y 与 t 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 t,使?若存在,求出 t 的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻 t,使点M在PG的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0.
(1)求抛物线的顶点坐标;
(2)试说明抛物线与直线有两个交点;
(3)已知点T(t,0),且-1≤t≤1,过点T作x轴的垂线,与抛物线交于点P,与直线交于点Q,当0<m≤3时,求线段PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如果每件商品的售价每上涨2元,则每个月少卖5件,设每件商品的售价为x元,则可卖y件,每个月销售利润为w元.
(1)求y与x的函数关系式;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AD//BC ,∠ABC=90°,BC=2AB=8,对角线AC平分∠BCD,过点D作DE⊥AC,垂足为点E,交边AB的延长线于点F,联结CF.
(1)求腰DC的长;
(2)求∠BCF的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线 与轴、轴分别交于点A、B如图所示,点在线段的延长线上,且.
(1)用含字母的代数式表示点的坐标;
(2)抛物线y经过点、,求此抛物线的表达式;
(3)在第(2)题的条件下,位于第四象限的抛物线上,是否存在这样的点:使,如果存在,求出点的坐标,如果不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com