精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD,,DAB=60°,点EAD边的中点MAB边上一动点不与点A重合,延长ME交射线CD于点N,连接MDAN

求证:四边形AMDN是平行四边形;

AM的值为______时,四边形AMDN是菱形并说明理由.

【答案】(1)详见解析;(2)2

【解析】

1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;

2)当平行四边形AMND的邻边AMDM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.

1)证明:∵四边形ABCD是菱形,

NDAM

∴∠NDE=∠MAE,∠DNE=∠AME

又∵点EAD边的中点

DEAE

∴△NDE≌△MAE

NDMA

∴四边形AMDN是平行四边形;

2)当AM的值为2时,四边形AMDN是菱形.理由如下:

AM2

AMAD2

∴△AMD是等边三角形,

AMDM

∴平行四边形AMDN是菱形,

故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1kxb与反比例函数y2 图象在第一、第三象限分别交于A34),Ba,-2)两点,直线ABy轴,x轴分别交于CD两点.

1)求一次函数和反比例函数的解析式;

2)比较线段ADBC大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的中线,点EAD的中点,过点AAFBCBE的延长线于F,连接CF

1)求证:AEF≌△DEB

2)若∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;

3)在(2)的情况下,点MAC线段上移动,请直接回答,当点M移动到什么位置时,MB+MD有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(a+1x2+2bx+a+1)=0有两个相等的实数根,则下面说法正确的是(  )

A. 1一定不是方程x2+bx+a0的根B. 0一定不是方程x2+bx+a0的根

C. 1可能是方程x2+bx+a0的根D. 1和﹣1都是方程x2+bx+a0的根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,D在射线BA上,以CD为一边,向右上方作等边△EDC.若BCCD的长为方程x215x+7m0的两根,当m取符合题意的最大整数时,则不同位置的D点共有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个滑道由滑坡(AB段)和缓冲带(BC段)组成,如图所示,滑雪者在滑坡上滑行的距离y(单位:m)和滑行时间t1(单位:s)满足二次函数关系,并测得相关数据:

滑行时间t1/s

0

1

2

3

4

滑行距离y1/s

0

4.5

14

28.5

48

滑雪者在缓冲带上滑行的距离y2(单位:m)和在缓冲带上滑行时间t2(单位:s)满足:y252t22t22,滑雪者从A出发在缓冲带BC上停止,一共用了23s,则滑坡AB的长度(  )米

A.270B.280C.375D.450

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列条件,求二次函数的解析式.

1)图象经过(01),(1,﹣2),(23)三点;

2)图象的顶点(23),且经过点(31);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B.

(1)求直线AB的解析式;

(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

查看答案和解析>>

同步练习册答案