【题目】某工厂餐厅计划购买12张餐桌和一批餐椅,现在从甲、乙两商场了解到,同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元,甲商场做活动,每购买一张餐桌赠送一把餐椅。乙商场的活动是所有桌椅均按报价的八五折销售。若该工厂计划购买餐椅 (>12)把,则:
(1)当购买40把餐椅时,到哪家商场购买划算?
(2)用含的代数式表示到甲、乙两商场购买所需要的费用。
(3)当购买多少把餐椅时,到甲、乙两商场购买所需要的费用相同?
【答案】(1)当购买桌椅40把时,到乙商场去买划算;(2),;(3)当购买32把餐椅时,到甲、乙两商场购买所需要的费用相同.
【解析】
(1)分别计算甲乙两个商家所需要的费用,进行比较,即可得到答案;
(2)根据题意,找出等量关系,列出关系式即可;
(3)由(2)的结论,令两个商家的费用相等,即可求出椅子的数量.
解:(1)时,
元,
元,
∵3800>3740 ,
∴乙合适;
∴当购买桌椅40把时,到乙商场去买划算。
(2)设购买12张餐桌和把餐椅,到购买甲商场的费用为元,到乙商场购买的费用为元. 由题意得:
;
;
(3)到甲、乙两商场购买所需要的费用相同,
令,则
,
解得:
∴当购买32把餐椅时,到甲、乙两商场购买所需要的费用相同.
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲骑电瓶车,乙骑自行车从相距17km的两地相向而行.
(1)甲、乙同时出发经过0.5h相遇,且甲每小时行程是乙每小时行程的3倍少6km.求乙骑自行车的速度.
(2)若甲、乙骑行速度保持与(1)中的速度相同,乙先出发0.5h,甲才出发,问甲出发几小时后两人相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明将一个正方形纸剪去一个宽为的长条后, 再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么剩下的白色长方形纸的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①若,则;②整数和分数统称为有理数;③绝对值等于它本身的整数是0;④是二次三项式;⑤几个有理数相乘,当负因数的个数是奇数时,积一定为负数,其中判断正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com