【题目】为了迎接祖国七十周年庆典,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运16趟可完成,需支付运费5400元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟;
(2)若单独租用一台车,租用哪台车合算?
【答案】(1)甲车单独运完此堆垃圾需24趟,乙车需48趟;(2)租用乙车合算.
【解析】
(1)设甲车单独运完此堆垃圾需运x趟,可得乙车单独运完此堆垃圾需运2x趟,根据甲、乙两车运送,两车各运16趟可完成列方程求出x的值,进而求出2x的值即可得答案;
(2)设甲车一趟运费为a元,可得乙车一趟运费为(a-200)元,根据甲、乙两车运送,需支付运费5400元列方程可求出a的值,进而可求出单独租用每车的费用,比较即可得答案.
(1)设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,
∵甲、乙两车运送,两车各运16趟可完成,
∴,
解得:,
经检验,是原方程的解,且符合题意,
∴,
答:甲车单独运完此堆垃圾需24趟,乙车需48趟.
(2)设甲车一趟运费为a元,则乙车一趟运费为(a-200)元,
∵甲、乙两车运送,需支付运费5400元,
∴16(a+a-200)=5400
解得:a=,
∴乙车一趟运费为:-200=元,
∴甲车总运费为:×24=6450元,乙车总运费为:×48=3300元,
∵6450元>3300元,
∴租用乙车合算.
科目:初中数学 来源: 题型:
【题目】已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;
(2)如图,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=6,求△ADE的周长.
(2)若∠DAE=60°,求∠BAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,ABCD是一块边长为2米的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料. 当AM的长为何值时,截取两块相邻的正方形板料的总面积最小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一蚂蚁从原点出发,按向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如下图,则A2019的坐标是( )
A.(2019,0)B.(504,0)C.(1009,0)D.(1010,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:
①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;
②用被除式的第一项除以除式第一项,得到商式的第一项;
③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;
④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.
例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:
所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2+2x﹣1,余式为0.
根据阅读材料,请回答下列问题(直接填空):
(1)(2x3+x﹣3)÷(x﹣1)= ;
(2)(4x2﹣4xy+y2+6x﹣3y﹣10)÷(2x﹣y+5)= ;
(3)[(x﹣2)(x﹣3)+1]÷(x﹣1)的余式为 ;
(4)x3+ax2+bx﹣15能被x2﹣2x+3整除,则a= ,b= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com