【题目】已知:在中, ,点在上,连结,且.
(1)如图1,求的度数;
(2) 如图2, 点在的垂直平分线上,连接,过点作于点,交于点,若,,求证: 是等腰直角三角形;
(3)如图3,在(2)的条件下,连接,过点作 交于点,且,若,求的长.
【答案】(1) ;(2)证明见解析;(3).
【解析】
(1)根据已知推出,然后利用三角形外角的性质有,则,然后利用即可求解;
(2)由垂直平分线的性质得到,从而有,根据同位角相等,两直线平行可得出,进而得出,然后通过等量代换得出 ,所以 , ,则结论可证;
(3)首先证明,则有, , ,然后证明得出,然后通过对角度的计算得出, ,同理证明点在的垂直平分线上 ,则有
,所以 ,最后通过证明,得出,则答案可解 .
(1)
(2)∵点 在线段 的垂直平分线上
.
又
∴
是等腰直角三角形
(3)如图 ,过作交 的延长线于点 于点,连接,令,与的交点分别为点,.
在四边形中,
又
又
又
又
又
又
∴点在的垂直平分线上
同理点在的垂直平分线上
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=,AC=,BC=,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF,
(1)求证:AE是⊙O的直径;
(2)若∠ABC=∠EAC,AE=8,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,为的中点,、分别是、(或它们的延长线)上的动点,且.
(1)当时,如图①,线段和线段的关系是:_________________;
(2)当与不垂直时,如图②,(1)的结论还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)当、运动到、的延长线时,如图③,请直接写出、、之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:
①,②,③,④.
其中说法正确的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有两地,甲,乙两辆货车都要从地送货到地,甲车先从地出发匀速行驶,3小时后乙车从地出发,并沿同一路线匀速行驶,当乙车到达地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为(小时),两车之间的距离记为(千米),与的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离地( )千米.
A.495B.505C.515D.525
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在1、2、3、4、5这五个数中,先任意取一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b).求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com