精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,已知A(22)B(40),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )

A. 1B. 2C. 3D. 4

【答案】D

【解析】

由点AB的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.

∵点AB的坐标分别为(22)B(40)

AB=2

如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(B),即(00)(40)

∴满足ABC是等腰三角形的C点有1个;

②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足ABC是等腰三角形的C点有2个;

③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足ABC是等腰三角形的C点有1个;

综上所述:点Cx轴上,ABC是等腰三角形,符合条件的点C共有4个.

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将连续的正偶数2468…,排成下表:

1)十字框中的五个数的和是中间的数16的几倍?

2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为,用代数式表示十字框中的五个数的和;

3)这五个数的和能等于2010吗?如能,写出这五个数,如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教材母题 点P(xy)在第一象限,且xy=8,点A的坐标为(6,0).设△OPA的面积为S.

(1)用含有x的式子表示S,写出x的取值范围,画出函数S的图象;

(2)当点P的横坐标为5时,△OPA的面积为多少?

(3)△OPA的面积能大于24吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的边BC上的高,∠B60°C45°AC6.求:

(1)AD的长;

(2)ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点OAB上的一点,∠COE90°OF平分∠AOE

1)如图1,当点CEF在直线AB的同一侧时,若∠AOC40°,求∠BOE和∠COF的度数;

2)在(1)的条件下,∠BOE和∠COF有什么数量关系?请直接写出结论,不必说明理由;

3)如图2,当点CEF分别在直线AB的两侧时,若∠AOCβ,那么(2)中∠BOE和∠COF的数量关系是否仍然成立?请写出结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去冬今春,我市部分地区遭受了罕见的旱灾,旱灾无情人有情.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.

1)求饮用水和蔬菜各有多少件?

2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;

3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点PPQBC于点Q,将△PBQPQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).

(1)用含x的代数式表示线段AP的长.

(2)当点P在线段BA上运动时,求yx之间的函数关系式.

(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E

使AE∥BC,连接AE。

(1)求证:四边形ADCE是矩形;

(2)①若AB=17,BC=16,则四边形ADCE的面积=

②若AB=10,则BC= 时,四边形ADCE是正方形。

查看答案和解析>>

同步练习册答案