精英家教网 > 初中数学 > 题目详情

【题目】如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为(  )

A.
B.
C.
D.

【答案】A
【解析】解:设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
=
=
∴y=﹣x+
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选:A.

等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B的坐标为(18,6).

(1)求直线l1,l2对应的函数表达式;

(2)C为线段OB上一动点(C不与点O,B重合),作CD∥y轴交直线l2于点D,设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD,PAB=130°,PCD=120°.求APC度数.

小明的解题思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50°+60°=110°.

问题迁移:

(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=α,BCP=β.试判断CPD、α、β之间有何数量关系?请说明理由;

(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、α、β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB边的垂直平分线BCDAC边的垂直平分线BCE 相交于点OADE的周长为6cm

1)求BC的长;

2)分别连结OAOBOC,若△OBC的周长为16cm,求OA的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级(1)班部分学生接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了如图①②两幅不完整的统计图,请根据图中的信息解答下列问题.

(1)九年级(1)班接受调查的学生共有多少名?

(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题引入:

(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (α表示);

如图2,CBO=ABC,BCO=ACB,A=α,则∠BOC= (α表示);

拓展研究:

(2)如图3,CBO=DBC,BCO=ECB,A=α,猜想∠BOC= (α表示),并说明理由;

(3)BO、CO分别是△ABC的外角∠DBC、ECBn等分线,它们交于点O,CBO=DBC,BCO=ECB,A=α,请猜想∠BOC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国有五座名山,但在洪雅人的心目中,我国有六座名山,这六座名山的海拔分别为:

山名

泰山

华山

黄山

庐山

峨嵋山

瓦屋山

海拔(米)

1152

1997

1873

1500

1309

2830

(1)海拔最高的山是多少,最高的山与最低的山的海拔相差多少米;

(2)海拔不低于1500米的山的频数是多少;频率是多少

(3)根据数据制作条形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l上有三个正方形a,b,c,若a,c的面积分别为210,则b的面积为(  )

A. 8 B. C. D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生对安全知识的掌握情况,学校随机抽取了20名学生进行安全知识测试,测试成绩(百分制)如下:

7886938197887993879093988881949581989994

(1)根据上述数据,将下列表格补充完整(每组含最小值):

成绩/

70~80

80~90

90~100

人数

7

(2)若用(1)中数据制作扇形统计图,求出表示“70~80”扇形的圆心角度数;

(3)已知该校共有2000名学生,若规定成绩90分及以上为优秀,估计该校学生对安全知识掌握情况为优秀的有多少人?

查看答案和解析>>

同步练习册答案