分析 由于AD=AE,∠ABE=∠ACD,∠A为公共角,根据全等三角形的判定方法得到△ABE≌△ACD,则AB=AC,根据等腰三角形的性质有∠ABC=∠ACB,易得∠FBC=∠FCB,根据等腰三角形的判定即可得到△BFC是等腰三角形.
解答 解:△BFC是等腰三角形.理由如下:
在△ABE和△ACD中,
$\left\{\begin{array}{l}{∠ABE=∠ACD}\\{∠A=∠A}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ACD.
∴AB=AC.
∴∠ABC=∠ACB.
∴∠ABC-∠ABE=∠ACB-∠ACD.
即∠FBC=∠FCB.
∴△BFC是等腰三角形.
点评 本题考查了全等三角形的判定与性质:有两个角和其中一个角所对的边对应相等的两个三角形全等;全等三角形的对应边相等.也考查了等腰三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
| 甲 | 乙 | |
| 进价(元/袋) | m | m-2 |
| 售价(元/袋) | 20 | 13 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 两角及一边分别相等的两个三角形全等 | |
| B. | 两边及一角分别相等的两个三角形全等 | |
| C. | 两腰分别相等的两个等腰三角形全等 | |
| D. | 底边及一腰分别相等的两个等腰三角形全等 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com