精英家教网 > 初中数学 > 题目详情

【题目】每个小正方形都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.

1)画出菱形OABC关于原点O的中心对称图形OA1B1C1,并直接写出点B1的坐标;

2)将菱形OABO绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2并求出点B旋转到B2的路径长.

【答案】1)图见解析,B1的坐标为(﹣4,﹣4);(2)见解析,

【解析】

1)利用关于原点对称的点的坐标特征写出A1B1C1的坐标,然后描点即可;

2)利用旋转的性质画出A2B2C2,从而得到菱形OA2B2C2,利用弧长公式计算点B旋转到B2的路径长.

1)如图,四边形OA1B1C1为所作;点B1的坐标为(﹣4,﹣4);

2)如图,菱形OA2B2C2为所作,OB,点B旋转到B2的路径长

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、Ex轴上,CFy轴于点B(0,2),且矩形其面积为8,此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACBCAB10,以AB为斜边向上作RtABD,使∠ADB90°.连接CD,若CD7,则AD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点AB的坐标分别为(40),(32).

1)画出AOB关于原点O对称的图形COD

2)将AOB绕点O按逆时针方向旋转90°得到EOF,画出EOF

3)点D的坐标是   ,点F的坐标是   ,此图中线段BFDF的关系是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE的周长是9.其中,正确结论的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x1x2是关于x的方程2x24mx+2m2+3m+20的两个实根,当m_____时,x12+x22有最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线ly=﹣x1,双曲线y,在l上取一点A1,过A1x轴的垂线交双曲线于点B1,过B1y轴的垂线交l于点A2,请继续操作并探究:过A2x轴的垂线交双曲线于点B2,过B2y轴的垂线交l于点A3,…,这样依次得到l上的点A1A2A3,…,An,…记点An的横坐标为an,若a12,则a2018_____;若要将上述操作无限次地进行下去,则a1不可能取的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2

(2)能否使所围矩形场地的面积为810m2 ,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求证: .

(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即

,如T(60°)=1.

①理解巩固:T(90°)= ________,T(120°)=_________,若α是等腰三角形的顶角,则T(α)的取值范围是_____________________

②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点这沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).

(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)

查看答案和解析>>

同步练习册答案