【题目】如图,在矩形中,为中点,以为边作正方形,边交于点.在边上取点使,作交于点,交于点.
(1)请你利用该图解释平方差公式:.
(2)现以点为圆心,为半径作圆弧交线段于点,连接.若点在同一直线上,求的值?
(3)记的面积为,图中四边形的面积为,求的值.
【答案】(1)见解析;(2)3;(3)
【解析】
(1)分别利用a和b表示出S矩形ADLM和阴影部分的面积,然后根据S矩形ADLM=S矩形ADHE+S矩形EHLM =S矩形EHCB+S矩形LNGC=S阴影,即可证出结论;
(2)连接AG,利用平行证出△AML∽△GNL,然后列出比例式即可求出结论;
(3)连接PF,则PF=EF=a,HF=b,且a=3b,根据面积公式求出和即可求出结论.
解:(1)由图可知:AE=BE=BG=a,EM=b
由题已知:四边形ADLM、ADHE、EHCB、EHLM、LNGC都为矩形,四边形EFGB、HFNL都为正方形,CG=EM=b,BC=a-b且S矩形ADHE=S矩形EHCB,S矩形EHLM= S矩形LNGC
∴S矩形ADLM =AD·AM= BC·AM=(a-b)(a+b)
图中阴影部分的面积=S正方形EFGB-S正方形HFNL=a2-b2
∵S矩形ADLM=S矩形ADHE+S矩形EHLM =S矩形EHCB+S矩形LNGC=S阴影
∴(a-b)(a+b)= a2-b2
(2)连接AG,由题意可知,AG必过点L,
∵AM∥GN
∴△AML∽△GNL
∴
即
解得:a=3b
∴=3;
(3)连接PF,则PF=EF=a,HF=b,且a=3b
∴PH=
∴=PH·EH=·(a-b)=
=a(a-b)=
∴=
科目:初中数学 来源: 题型:
【题目】一次函数的图像与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且△OAB的外接圆的圆心M的横坐标为-3.
(1)求一次函数的解析式;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按(优秀),(良好),(合格),(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整,并计算扇形统计图中“”部分所对应的圆心角的度数.
(3)该市九年级共有9000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F.
(1)求证:EF为⊙P的切线;
(2)求⊙P的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点.
(1)求满足的关系式及的值;
(2)当时,求抛物线解析式,并直接写出当时的取值范围.
(3)当时,若的函数值随的增大而增大,求的取值范围;
(4)如图,当时,在第二象限的抛物线上找点,使的面积最大,求出点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等
(1)求每台A型、B型净水器的进价各是多少元?
(2)该公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣小组向利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=10m,请你根据以上数据计算GH的长(要求计算结果保留根号,不取近似值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为( )
A.19°B.33°C.34°D.43°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com