【题目】已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
(3)若DF2=8-4,求正方形ABCD的面积?
【答案】(1)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.
【解析】
试题(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;
(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;
(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-1)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.
试题解析:(1)证明:在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS);
(2)OG∥BF且OG=BF,
理由:如图,
∵BE平分∠DBC,
∴∠2=∠3,
在△BGD和△BGF中,
,
∴△BGD≌△BGF(ASA),
∴DG=GF,
∵O为正方形ABCD的中心,
∴DO=OB,
∴OG是△DBF的中位线,
∴OG∥BF且OG=BF;
(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,
∴BF=BD,
∴CF=(-1)x,
∵DF2=DC2+CF2,
∴x2+[(-1)x]2=8-4,解得x2=2,
∴正方形ABCD的面积是2.
科目:初中数学 来源: 题型:
【题目】在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如图,当点P在线段AB上运动,且n=90°时
①若PD∥BC,PE∥AC,则m=_____;
②若m=50°,求x+y的值.
(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是( )
A.无解
B.x=1
C.x=﹣4
D.x=﹣1或x=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是 ;四边形A2015B2015C2015D2015的周长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动.若设CD=x,△ABD的面积为y.
(1)请写出y与x之间的关系式.
(2)当x为何值时,y有最大值,最大值是多少?此时点D在什么位置?
(3)当△ABD的面积是△ABC的面积的一半时,点D在什么位置?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y1=x(x≥0),y2= (x>0)的图象如图所示,则以下结论:
①两函数图象的交点A的坐标为(2,2);②当x>2时,y1>y2;
③BC=2;④两函数图象构成的图形是轴对称图形;
⑤当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点C(1,2)分别作x轴,y轴的平行线,交直线y=-x+6于点A,B,若反比例函数y= (x>0)的图象与△ABC有公共点,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com