精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,还需再添加两个条件才能使,则不能添加的一组条件是(

A. AC=DE,∠C=EB. BD=ABAC=DE

C. AB=DB,∠A=DD. C=E,∠A=D

【答案】C

【解析】

根据全等三角形的判定方法分别进行判定即可.

A. 已知BC=BE,再加上条件AC=DE,C=E可利用SAS证明ABC≌△DBE,故此选项不合题意;

B. 已知BC=BE,再加上条件BD=AB,AC=DE可利用SSS证明ABC≌△DBE,故此选项不合题意;

C. 已知BC=BE,再加上条件AB=DB,A=D不能证明ABC≌△DBE,故此选项符合题意;

D. 已知BC=BE,再加上条件∠C=E,A=D可利用ASA证明ABC≌△DBE,故此选项不合题意;

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,OBOC分别平分∠ABC和∠ACB,过ODEBC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为(  )

A. 3 B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海面上甲、乙两船分别从A,B两处同时出发,由西向东行驶,甲船的速度为24n mile/h,乙船的速度为15n mile/h,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile,经过20分钟后,甲、乙两船分别到达C,D两处.

(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

(1)求两条航线间的距离;

(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上.若A、D、F在一条直线上,则∠1与∠2的数量关系是(  )

A. 1+2=60° B. 2﹣1=30° C. 1=22. D. 1+22=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,BFCF是角平分线,DEBC,分别交ABAC于点DEDE经过点F.结论:①△BDFCEF都是等腰三角形;②DE=BD+CE③△ADE的周长=AB+ACBF=CF.其中正确的是______(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),

C(3,4)

⑴ 作出与△ABC关于y轴对称△A1B1C1,并写出 三个顶点的坐标为:A1 ),B1 ),C1 );

⑵ 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;

⑶ 在 y 轴上是否存在点 Q,使得SAOQ=SABC,如果存在,求出点 Q 的坐标,如果不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.

(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;

(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一矩形纸片OABC放在直角坐标系中,O为原点,Cx轴上,OA6OC10.

(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;

(2)如图2,在OAOC边上选取适当的点E′F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′D′GC′OE′FT点,交OC′G点,T坐标为(3m),求m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是△ABC内部的一点,BD=CD,过点DDEAB,DFAC,垂足分别为E、F,且BE=CF.求证:AB=AC.

查看答案和解析>>

同步练习册答案