精英家教网 > 初中数学 > 题目详情
17.抛物线y=-x2+2x+3与x轴交于A、B两点,则AB=4.

分析 根据抛物线与x轴的交点问题,通过解方程-x2+2x+3=0可得到点A和点B的坐标,然后利用两点间的距离公式可求出AB的长.

解答 解:当y=0时,-x2+2x+3=0,解得x1=-1,x2=3,
则A(-1,0),B(3,0),
所以AB=3-(-1)=4.
故答案为4.

点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)$\sqrt{32}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$-$\sqrt{\frac{1}{8}}$;
(2)($\sqrt{8}$-2$\sqrt{0.25}$)-($\sqrt{1\frac{1}{8}}$+$\sqrt{50}$+$\frac{2}{3}$$\sqrt{72}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,A、B、C在同一条直线上,∠1=∠2,AB=BC,BD=BE.求证:∠D=∠E.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:四边形ABCD,∠B=50°,∠C=60°,满足AD+DC=BC,AB2+DC2=4AD2,求:∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆与y轴正半轴交于点C,A、B两点的横坐标xA、xB是关于x的方程x2+3x-4=0的两个根.
(1)求点C的坐标;
(2)若∠ACB的平分线所在的直线l交x轴于点D,求直线l对应的一次函数关系式;
(3)过点D任作一直线l′分别交射线CA、CB(点C除外)于点M、N,则$\frac{1}{CM}$+$\frac{1}{CN}$的值是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.观察下图的规律,在“?”处填上的数字是(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.抛物线y=-2(x+4)2-5的顶点坐标是(-4,-5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,后求值:
(1)($\frac{a}{a-b}$-$\frac{{a}^{2}}{{a}^{2}-2ab+{b}^{2}}$)÷($\frac{a}{a+b}$-$\frac{{a}^{2}}{{a}^{2}-{b}^{2}}$)+1,其中a=$\frac{2}{3}$,b=-3
(2)$({\frac{3x}{x-1}-\frac{x}{x+1}})•\frac{{{x^2}-1}}{x}$,其中x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始 数连续的正整数1,2,3,4…,当数到12时,对应的字母是B;当字母C第201次出现时,恰好数到的数是603.

查看答案和解析>>

同步练习册答案