精英家教网 > 初中数学 > 题目详情

【题目】如果线段AB=5cm,BC=4cm,且A,B,C,D,在同一条直线上,那么A,C两点的距离是( )
A.1cm
B.9cm
C.1cm或9cm
D.以上答案都不正确

【答案】C
【解析】解:如图2所示:

当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);

当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).

所以答案是:C.


【考点精析】根据题目的已知条件,利用有理数的加法法则和有理数的减法的相关知识可以得到问题的答案,需要掌握有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值3、一个数与0相加,仍得这个数;有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2x+2x轴交于AB两点,与y轴交于点C

1)求点ABC的坐标;

2)点E是此抛物线上的点,点F是其对称轴上的点,求以ABEF为顶点的平行四边形的面积;

3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,APB中,AB=2,APB=90°,在AB的同侧作正ABD、正APE和正BPC,则四边形PCDE面积的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2﹣4x+2=0的根的情况是(
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:

(1)这次评价中,一共抽查了名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC与Rt△DEF的位置如图所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射线CB以每秒1个单位长度的速度向右运动,射线DE、DF与射线AB分别交于N、M两点,运动时间为t,当点E运动到与点B重合时停止运动.

(1)当Rt△DEF在起始时,求∠AMF的度数;

(2)设BC的中点的为P,当△PBM为等腰三角形时,求t的值;

(3)若两个三角形重叠部分的面积为S,写出S与t的函数关系式和相应的自变量的取值范围.

查看答案和解析>>

同步练习册答案