精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC内接于O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DEBC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与O交于点G,设GAB=ɑ,ACB=β,EAG+EBA=γ,

(1)点点同学通过画图和测量得到以下近似数据:

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:

(2)若γ=135°,CD=3,ABE的面积为ABC的面积的4倍,求O半径的长.

【答案】(1)β=α+90°,γ=﹣α+180°(2)5

【解析】

试题分析:(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DEBC,可知EDC=90°,由三角形外角的性质即可得出CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:EBO+EAG=180°,即γ=﹣α+180°;

(2)由(1)及γ=135°可知BOA=90°,BCE=45°,BEC=90°,由于ABE的面积为ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出O的半径r.

试题解析:(1)猜想:β=α+90°,γ=﹣α+180°

连接OB,

由圆周角定理可知:2BCA=360°﹣BOA,

OB=OA,

∴∠OBA=OAB=α,

∴∠BOA=180°﹣2α,

2β=360°﹣(180°﹣2α),

β=α+90°,

D是BC的中点,DEBC,

OE是线段BC的垂直平分线,

BE=CE,BED=CED,EDC=90°

∵∠BCA=EDC+CED,

β=90°+CED,

∴∠CED=α,

∴∠CED=OBA=α,

O、A、E、B四点共圆,

∴∠EBO+EAG=180°,

∴∠EBA+OBA+EAG=180°,

γ+α=180°;

(2)当γ=135°时,此时图形如图所示,

α=45°,β=135°,

∴∠BOA=90°,BCE=45°,

由(1)可知:O、A、E、B四点共圆,

∴∠BEC=90°,

∵△ABE的面积为ABC的面积的4倍,

设CE=3x,AC=x,

由(1)可知:BC=2CD=6,

∵∠BCE=45°,

CE=BE=3x,

由勾股定理可知:(3x)2+(3x)2=62

x=

BE=CE=3,AC=

AE=AC+CE=4

在RtABE中,

由勾股定理可知:AB2=(32+(42

AB=5

∵∠BAO=45°,

∴∠AOB=90°,

在RtAOB中,设半径为r,

由勾股定理可知:AB2=2r2

r=5,

∴⊙O半径的长为5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.

类型

频数

频率

A

30

B

18

0.15

C

0.40

D

(1)学生共________人, ________, ________;

(2)补全条形统计图;

(3)若该校共有2000人,骑共享单车的有________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1CA=CBCD=CE,∠ACB=DCE

1)求证:BE=AD

2)当α=90°时,取ADBE的中点分别为点PQ,连接CPCQPQ,如图②,判断CPQ的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=x的图象与函数y的图象相交于点P(1,m).

(1) m,k 的值.

(2)直线 y=2与函数y=x的图象相交于点A,与函数y的图象相交于点B,求线段 AB .

(3)直接写出不等式x的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的一个数学兴趣小组在本校学生中开展主题为环广西公路自行车世界巡回赛的专题调查活动,取随机抽样的方式进行问卷调查,问卷调查的结果分为非常了解”、“比较了解”、“基本了解”、“不太了解四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示不完整的统计图,请结合图中信息解答下列问题:

(1)请求出本次被调查的学生共多少人,并将条形统计图补充完整.

(2)估计该校1500名学生中“C等级的学生有多少人?

(3)在“B等级的学生中,初三学生共有4人,其中13女,在这4个人中,随机选出2人进行采访,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣+bx+cx轴于点A﹣20)和点B,交y轴于点C03),点Dx轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线lx轴,垂足为H,过点CCFlF,连接DF

1)求抛物线解析式;

2)若线段DECD绕点D顺时针旋转90°得到,求线段DF的长;

3)若线段DECD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC,AD=AE,若添加一个条件不能得到“△ABD≌△ACE”是(  )

A. ∠ABD=∠ACE B. BD=CE C. ∠BAD=∠CAE D. ∠BAC=∠DAE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.

(1)求的度数;

(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

查看答案和解析>>

同步练习册答案