【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.
(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.
【答案】(1)1(2)证明见解析(3)结论不成立.结论:BE﹣CF=AB
【解析】
试题分析:(1)如图1中,只要证明∠BED=90°,根据直角三角形30度角性质即可解决问题.
(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.只要证明△BDM≌△CDN,△EDM≌△FDN即可解决问题.
(3)(2)中的结论不成立.结论:BE﹣CF=AB,证明方法类似(2).
试题解析:(1)如图1中,
∵AB=AC,∠A=60°,
∴△ABC是等边三角形,
∴∠B=∠C=60°,BC=AC=AB=4,
∵点D是线段BC的中点,
∴BD=DC=BC=2,
∵DF⊥AC,即∠CFD=90°,
∴∠CDF=30°,
又∵∠EDF=120°,
∴∠EDB=30°,
∴∠BED=90°
∴BE=BD=1.
(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.
∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,
∴△BDM≌△CDN,
∴BM=CN,DM=DN,
又∵∠EDF=120°=∠MDN,
∴∠EDM=∠NDF,
又∵∠EMD=∠FND=90°,
∴△EDM≌△FDN,
∴ME=NF,
∴BE+CF=BM+EM+NC﹣FN=2BM=BD=AB.
(3)结论不成立.结论:BE﹣CF=AB.
∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,
∴△BDM≌△CDN,
∴BM=CN,DM=DN,
又∵∠EDF=120°=∠MDN,
∴∠EDM=∠NDF,
又∵∠EMD=∠FND=90°,
∴△EDM≌△FDN,
∴ME=NF,
∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD=AB.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.一个游戏的中奖概率是 , 则做5次这样的游戏一定会中奖
B.为了解深圳中学生的心理健康情况,应该采用普查的方式
C.事件“小明今年中考数学考95分”是可能事件
D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x,y互为相反数,m,n互为倒数,且有|a﹣2|=3,试求下面代数式的值:a2﹣(x+y+mn)a+(x+y)2017﹣(﹣mn)2017.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列命题:其中,真命题的个数是( )
(1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形;
(3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形.
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆直辖十年以来,全市投入环保资金约3 730 000万元,那么3 730 000万元用科学记数法表示为( )
A.37.3×105万元
B.3.73×106万元
C.0.373×107万元
D.373×104万元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com