C.
【解析】根据本题的题意,由主视图可设计该几何体
如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.
故选C.
![]()
科目:初中数学 来源: 题型:
如图,□ABCD的面积为20,点E,F,G为对角线AC的四等分点,连接BE并延长交AD于H,连接HF并延长交BC于点M,则△BHM的面积为( )
![]()
A、10 B、
C、4 D、5
查看答案和解析>>
科目:初中数学 来源: 题型:
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.
![]()
(1)如图1, 当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=
,求此时线段CF的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是( )
![]()
A.5:8 B.25:64 C.1:4 D.1:16
查看答案和解析>>
科目:初中数学 来源: 题型:
B
【解析】连接EC,交AD于点P,次数EP+BP的值最小,过点E作EF⊥BC,则有BD=CD=2,由勾股定理,可
得AD=2
,同时可得EF∥AD,△BEF∽△BAD,所以
,解得BF=1.5,FD=0.5,EF=
,所以EC=
=
,所求的最小值是
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com