精英家教网 > 初中数学 > 题目详情

【题目】如图,已知的直径的弦,过点的切线的延长线于点,过点,垂足为,与交于点,设的度数分别是,且

1)用含的代数式表示

2)连结于点,若,求的长.

【答案】1;(2

【解析】

1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
2)连接CF,根据可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°再根据弧长公式计算即可.

解:(1)如图示,连结

的切线,

,即

2)如图示,连结

∴四边形是平行四边形,

∴四边形是菱形,

是等边三角形,

的长

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.

治理杨絮一一您选哪一项?(单选)

A.减少杨树新增面积,控制杨树每年的栽种量

B.调整树种结构,逐渐更换现有杨树

C.选育无絮杨品种,并推广种植

D.对雌性杨树注射生物干扰素,避免产生飞絮

E.其他

根据以上统计图,解答下列问题:

(1)本次接受调查的市民共有  人;

(2)扇形统计图中,扇形E的圆心角度数是   

(3)请补全条形统计图;

(4)若该市约有90万人,请估计赞同选育无絮杨品种,并推广种植的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,O是对角线ACBD的交点,MBC边上的动点M不与BC重合CNAB交于点N,连接OMON下列五个结论:,则的最小值是,其中正确结论的个数是  

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:.舞蹈;.绘画与书法;.球类;.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:

1)这次统计共抽查了_________名学生,请补全条形统计图;

2)该校共有600名学生,根据以上信息,请你估计全校学生中想参加类活动的人数;

3)若甲、乙两名同学,各自从三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形 中,点是射线 上一个动点.连接,点分别为,的中点,连接于点

1)如图 1,当点在线段 的延长线上时,请判断的形状,并说明理由.

2)如图 2,正方形 的边长为 4,点与点 关于直线 对称,且点在线段 上.连接,若点 恰好在直线上,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ABC=90°

(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)

①作线段AC的垂直平分线l,交AC于点O;

②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;

③连接DA、DC

(2)判断四边形ABCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直角三角形AOB的直角顶点Bx轴正半轴上,点A在第一象限,OB2tanAOB2

1)求图象经过点A的反比例函数的解析式;

2)点C是(1)中反比例函数图象上一点,连接OCAB于点D,连接AC,若DOC中点,求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数的图象与反比例函数的图象交于AB两点,过点AAC垂直x轴于点C,连结BC.若ABC的面积为2

1)求k的值;

2x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知⊙OABC的外接圆,AB为⊙O的直径,AC=6cmBC=8cm.

(1)求⊙O的半径;

(2)请用尺规作图作出点P,使得点P优弧CAB上时,PBC的面积最大,请保留作图痕迹,并求出PBC面积的最大值.

查看答案和解析>>

同步练习册答案