【题目】如图,在平面直角坐标系中,点O为坐标原点,直角三角形AOB的直角顶点B在x轴正半轴上,点A在第一象限,OB=2,tan∠AOB=2.
(1)求图象经过点A的反比例函数的解析式;
(2)点C是(1)中反比例函数图象上一点,连接OC交AB于点D,连接AC,若D为OC中点,求△ADC的面积.
【答案】(1)y=;(2)3
【解析】
(1)依据tan∠AOB=2,即可得到AB=2OB=4,进而得出点A的坐标为(2,4),利用待定系数法即可得出反比例函数的解析式;
(2)过C作CE⊥x轴于E,则BD∥CE,依据△OBD∽△OEC,即可得到AD=AB﹣BD=4﹣1=3,BE=2,进而得出S△ACD=AD×BE=3.
解:(1)∵直角三角形AOB的直角顶点B在x轴正半轴上,点A在第一象限,OB=2,tan∠AOB=2,
∴AB=2OB=4,
∴点A的坐标为(2,4),
设经过点A的反比例函数的解析式为y=,
则k=2×4=8,
∴y=.
(2)如图所示,过C作CE⊥x轴于E,则BD∥CE,
∴△OBD∽△OEC,
∵D是CO的中点,
∴===,
∴OE=2OB=4,CE=2BD=2,
∴BD=1,AD=AB﹣BD=4﹣1=3,BE=2,
∴S△ACD=AD×BE=×3×2=3.
科目:初中数学 来源: 题型:
【题目】如图,在中,,是边上的动点(不与点重合),将沿所在的直线翻折,得到,连接,则下列判断:
①当时,
②当时,
③当时,;
④长度的最小值是1.
其中正确的判断是______(填入正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为( )
A.1+B.C.D.2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作M交x轴于A.B两点,交y轴于C.D两点,连接AM并延长交M于P点,连接PC交x轴于E.
(1)求点C.P的坐标;
(2)求证:BE=2OE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的图象经过点A(2,-8),求:
(1)该抛物线的解析式;
(2)判断点B(3,-18)是否在该抛物线上;
(3)求出此抛物线上纵坐标是-50的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量(千克)与售价(元/千克)满足一次函数关系,部分数据如下表:
售价(元/千克) | 50 | 60 | 70 |
销售量(千克) | 120 | 100 | 80 |
(1)求与之间的函数表达式.
(2)设该商品每天的总利润为(元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?
(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现:当α=0°时,的值为 ;
(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;
(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com