精英家教网 > 初中数学 > 题目详情

【题目】已知ABC中,ABAC

1)如图1,在ADE中,若ADAE,且∠DAE=∠BAC,求证:CDBE

2)如图2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AEAD6CD8,求BD的长

【答案】1)详见解析;(2BD=10.

【解析】

1)根据SAS证明BAECAD全等,再利用全等三角形的性质证明即可;

2)根据等边三角形的性质和含30°的直角三角形的性质解答即可.

解:(1)∵∠DAE=∠BAC

∴∠BAE=∠CAD

BAECAD中,

∴△BAE≌△CADSAS),

CDBE

2)解:连接BE,如图2所示:

ADAE,∠DAE60°

∴△ADE是等边三角形,

CD垂直平分AE

∴∠CDAADE=×60°30°

∵△BAE≌△CAD

BECD8,∠BEA=∠CDA30°

BEDE

DEAD6

BD10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,边ABAC的垂直平分线分别交BCDE

(1)若BC=8,则△ADE周长是多少?

(2)若∠BAC=118°,则∠DAE的度数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,∠A=D=B=C=90,EAD上的一点,FAB上的一点,EFEC,且EFECDE=4cm.

(1)求证:AF=DE.

(2)AD+DC=18,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点OBC的平行线交ABM点,交ACN点,则△AMN的周长为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,PBA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CGAB,垂足为D.

(1)求证:∠PCA=ABC.

(2)过点AAEPC交⊙O于点E,交CD于点F,连接BE,若cosP=,CF=10,求BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“幸运数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“幸运数”,且的三十三分之一是完全平方数,则符合条件的最大一个的值为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.

请你根据图中信息,回答下列问题:

(1)本次共调查了  名学生.

(2)在扇形统计图中,歌曲所在扇形的圆心角等于  度.

(3)补全条形统计图(标注频数).

(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为  人.

(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.

据统计图提供的信息,解答下列问题:

(1)在这次调查中一共抽取了   名学生,m的值是   

(2)请根据据以上信息直在答题卡上补全条形统计图;

(3)扇形统计图中,数学所对应的圆心角度数是   度;

(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线x轴、y轴分别交于点B、C,抛物线经过点B、C,并与x轴交于另一点A.

(1)求此抛物线及直线AC的函数表达式

(2)垂直于y轴的直线l与抛物线交于点P(),Q(),与直线BC交于点,N(),若,结合函数的图象,求的取值范围

(3)经过点D(0,1)的直线m与射线AC、射线OB分别交于点M、N.当直线m绕点D旋转时, 是否为定值,若是,求出这个值,若不是,说明理由.

查看答案和解析>>

同步练习册答案