【题目】某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.
(1)当时,求与之间的函数关系式;
(2)当时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.
【答案】(1)y=-10x2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.
【解析】
(1)根据总利润=单件利润×销售量列出函数解析式即可;
(2)把y=-10x2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.
解:(1)y=(x-10)[100-10(x-12)
=(x-10)(100-10x+120)
=-10x2+320x-2200;
(2)y=-10x2+320x-2200=-10(x-16)2+360,
∴12≤x≤15时,
∵a=-10<0,对称轴为直线x=16,
∴抛物线开口向下,在对称轴左侧,y随x的增大而增大,
∴当x=15时,y取最大值为350元,
答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG 的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.△ABC的顶点在格点上,A(1,0)、C(0,7).
(1)在方格纸中画出平面直角坐标系,写出B点的坐标:B ;
(2)直接写出△ABC的形状: ,直接写出△ABC的面积 ;
(3)若D(﹣1,4),连接BD交AC于E,则= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题实验)如图①,在地面上有两根等长立柱,之间悬挂一根近似成抛物线的绳子.
(1)求绳子最低点到地面的距离;
(2)如图②,因实际需要,需用一根立柱撑起绳子.
①若在离为4米的位置处用立柱撑起,使立柱左侧的抛物线的最低点距为1米,离地面1.8米,求的长;
②将立柱来回移动,移动过程中,在一定范围内,总保持立柱左侧抛物线的形状不变,其函数表达式为,当抛物线最低点到地面距离为0.5米时,求的值.
(问题抽象)如图③,在平面直角坐标系中,函数的图像记为,函数的图像记为,其中是常数,图像、合起来得到的图像记为.
设在上的最低点纵坐标为,当时,直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com