精英家教网 > 初中数学 > 题目详情

【题目】安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:

1)求之间的函数关系式;

2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?

【答案】(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.

【解析】

1)根据图象可得:当,当;再用待定系数法求解即可;

2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.

解:(1)设一次函数解析式为:,根据图象可知:当;当

,解得:

之间的函数关系式为

2)由题意得:

整理得:,解得:

∵让顾客得到更大的实惠,∴.

答:商贸公司要想获利2090元,这种干果每千克应降价9元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以BC为直径的⊙OCFB的边CF于点ABM平分∠ABCAC于点MADBC于点DADBM于点NMEBC于点EAB2=AF·ACcosABD=AD=12

1)求证:ABF∽△ACB

2)求证:FB是⊙O的切线;

3)证明四边形AMEN是菱形,并求该菱形的面积S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(AB的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.

(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____

(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;

(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Qy轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荆门市是著名的鱼米之乡.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8/千克,乌鱼的批发单价与进货量的函数关系如图所示.

1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;

2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.

1)当时,求之间的函数关系式;

2)当时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知By轴上的动点,以AB为边构造,使点Cx轴上,BC的中点,则PM的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出AB两点间的距离为15m,并且NBA三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60cos37°≈0.80tan35°≈0.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+c图象的一部分,图象过点A(﹣30),对称轴为x=﹣1.给出四个结论:①b24ac;②2a+b0;③ab+c0;④5ab.其中正确的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.

1)当售价为22万元/辆时,求平均每周的销售利润.

2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.

查看答案和解析>>

同步练习册答案