【题目】如图,△ABC在平面直角坐标系中,网格中每个小正方形的边长均为1,三个顶点的坐标分别为A(0,2),B(4,0),C(4,6).
(1)画出△ABC向左平移2个单位长度得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为1:2,直接写出点C2的坐标.
科目:初中数学 来源: 题型:
【题目】如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAO=AMAP.
(1)连接OP,证明:△ADM∽△APO;
(2)证明:PD是ΘO的切线;
(3)若AD=24,AM=MC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求x为何值时,PQ⊥AC;
(2)设△PQD的面积为,当0<x<2时,求y与x的函数关系式;
(3)当0<x<2时,求证:AD平分△PQD的面积;
(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B、C,且B在C的左侧,△ABC有一个内角为60°.则抛物线的解析式是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们称这个三角形是比例三角形.
(1)已知△ABC是比例三角形,AB=1,BC=2,求AC的长.
(2)如图1,在四边形ABCD中,AB=AD,对角线BD平分∠ABC,∠BAC=∠ADC
①求证:△ABC是比例三角形
②若AB∥DC,如图2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=_____,S2=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在一个三角形中,若存在两条边x和y,使得y=x2,则称此三角形为“平方三角形”,x称为平方边.
(1)“若等边三角形为平方三角形,则面积为是 命题;“有一个角为30°且有一条直角边为2的直角三角形是平方三角形”是 命题;(填“真”或“假”)
(2)若a,b,c是平方三角形的三条边,平方边a=2,若三角形中存在一个角为60°,求c的值;
(3)如图,在△ABC中,D是BC上一点.
①若∠CAD=∠B,CD=1,求证,△ABC是平方三角形;
②若∠C=90°,BD=1,AC=m,CD=n,求tan∠DAB.(用含m,n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com