【题目】如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
科目:初中数学 来源: 题型:
【题目】如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,某校组织八年级名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为分)进行统计分析,得到如下所示的频数分布表:
分数段 | |||||
频数 | |||||
所占百分比 |
请根据尚未完成的表格,解答下列问题:
(1)本次抽样调查的样本容量为___ _,表中_ , _;
(2)补全如图所示的频数分布直方图;
(3)若成绩超过分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=1,BC=2,点E在AD上,且ED=2AE.
(1)求证:△ABC∽△EAB.
(2)AC与BE交于点H,求HC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和妈妈购物后回家,在一楼电梯口看到电梯正显示在顶楼(9楼),他们等了18s后,电梯显示在7楼,这时小明选择走楼梯,高度上升的速度为,他妈妈则继续等电梯,结果两个人同时到达家所在的楼层。图中所示的细线、粗线分别表示电梯匀速升降、小明走楼梯与一楼地面的距离h(m)与时间t(s)之间的关系。(温馨提示:小明家所在的电梯楼房为3m一层,人们进出电梯所用时间忽略不计,楼层与楼高的关系).
(1)写出A,B两点的坐标;
(2)写出直线AB的解析式,并解释点C的实际意义;
(3)求a,b的值,并求出小明家所处的楼层.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°
(1)如图1,若AD⊥BC于点D,求∠DAE的度数;
(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF= °.
(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC的角平分线,若P为线段AE上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF与∠B,∠C的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图像与一次函数的图像的一个交点的横坐标是-3.
(1)求的值,并画出这个反比例函数的图像;
(2)根据反比例函数的图像,写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量y(吨)与每吨的销售价x(万元)之间的函数关系如下图所示:
(1)求出销售量y与每吨销售价x之间的函数关系式;
(2)如果销售利润为w(万元),请写出w与x之间的函数关系式;
(3)当每吨销售价为多少万元时,销售利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com