【题目】在平面直角坐标系中,直线分别交x轴、y轴于点A、B将△AOB绕点O顺时针旋转90°后得到 .
(1)求直线的解析式;
(2)若直线与直线l相交于点C,求的面积.
【答案】(1);(2)
【解析】试题分析:(1)由直线l的函数解析式求得A、B两点坐标,找出旋转后A'、B'两点坐标,计算直线A'B'的解析式;
(2)联立两直线的解析式,求出C点坐标,再计算出△A'BC的面积.
试题解析:解:(1)由直线l: 分别交x轴,y轴于点A、B.可知:A(3,0),B(0,4).∵△AOB绕点O顺时针旋转90°而得到△A′OB′,∴△AOB≌△A′OB′,故A′(0,﹣3),B′(4,0).
设直线A′B′的解析式为y=kx+b(k≠0,k,b为常数)
∴,解得: ,∴直线A′B′的解析式为;
(2)由题意得: ,解得: ,∴C(,﹣),又A′B=3+4=7,∴S△A′BC==.
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,2),B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数的表达式和n的值;
(2)观察图象,直接写出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,0为坐标原点,点A的坐标为(-4,0),直线BC经过点B(-4,3),C(0,3),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤l80°)得到四边形OA′B′C′,此时直线OA′、直线B′C′,分别与直线BC相交于P,Q.在四边形OABC旋转过程中,若BP=BQ 则点P的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:(3x﹣6)(x2﹣)﹣6x(x2﹣x﹣6),其中x=﹣.
(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则
点B6的坐标____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个动点从点A开始上下来回运动5次,规定向上为正,向下为负。那么这5次运动结果记录如下(单位cm):-5,+7,-3.-11,+3
(1)这个动点停止运动时距离点A多远?在点A的什么位置处?
(2)若这个动点运动速度是2cm/s,运动5次一共需要多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一套房子的平面图,尺寸如图.
这套房子的总面积是多少? 用含有x、y的代数式表示.
如果米, 米,那么房子的面积是多少平方米?如果每平方米房价为万元,那么房屋总价多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com