【题目】如图1,在中,为的中点,是边上一动点,连接.若设 (当点与点重合时,的值为),.
小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整.
通过取点、画图、计算,得到了与的几组值,如下表:
说明:补全表格时,相关数值保留一位小数.
(参考数据:) .
如图2,描出剩余的点,并用光滑的曲线画出该函数的图象.
观察图象,下列结论正确的有 _ .
①函数有最小值,没有最大值
②函数有最小值,也有最大值
③当时,随着的增大而增大
④当时,随着的增大而减小
【答案】(1)5.0;6.0;(2)见解析;(3)②③.
【解析】
(1)过点D作DE⊥BC,则DE=,由勾股定理求出PA和PD的长度,即可得到答案;
(2)根据题意,通过描点、连线,补全函数图像即可;
(3)结合函数图像,分别对四个选项进行判断,即可得到答案.
解:(1)当时,如图:
∵AC=3,PC=1,由勾股定理,得
,
∵点D是AB中点,DE⊥BC,∠ACB=90°,
∴DE是中位线,
∴DE=,CE=2,
∴,
∴,
∴;
当PC=3时,此时PE=1,如图:
∴,,
∴;
故答案为:;.
描点、连线,如图:
(3)由(2)中图像可知:
函数有最小值,也有最大值;故①错误,②正确;
作点A关于BC的对称点G,连接DG,与BC相交于点P,
则此时PA+PD=DG为最小值;如图:
∵DE∥AG,
∴,
∴,
∴,
∴当时,PA+PD=DG有最小值;
∴当时,随着的增大而增大,③正确;
∴当时,随着的增大而减小,故④错误;
故答案为:②③.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有个白球,个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出个球,是白球的概率为.
(1)布袋里红球的个数_______;
(2)小亮和小丽将布袋中的白球取出个,利用剩下的球进行摸球游戏,他们约定:先摸出个球后不放回,再摸出个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七、八年级各有300名学生,近期对他们“2020年新型冠状病毒”防治知识进行了线上测试,为了了解他们的掌握情况,从七、八年级各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:
a.七年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.七年级学生成绩在80≤x<90的这一组是:
80 80.5 81 82 82 83 83.5 84
84 85 86 86.5 87 88 89 89
c.七、八年级学生成绩的平均数、中位数、众数如下:
年级 | 平均数 | 中位数 | 众数 |
七年级 | 85.3 | m | 90 |
八年级 | 87.2 | 85 | 91 |
根据以上信息,回答下列问题:
(1)表中m的值为 ;
(2)在随机抽样的学生中,防治知识成绩为84分的学生,在 年级排名更靠前,理由是 ;
(3)若各年级防治知识的前90名将参加线上防治知识竞赛,预估七年级分数至少达到 分的学生才能入选;
(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学著作(九章算术)中有如下问题:“今有人持金出五关,前关二而税一.次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为“今有人持金出五关,第关所收税金为持金的,第关所收税金为剩余金的,第关所收税金为剩余金的,第关所收税金为剩余金的,第关所收税金为剩余金的,关所收税金之和,恰好重斤.”若设这个人原本持金斤,根据题意可列方程为__________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)
(1)在圆①中画圆的一个内接正六边形;
(2)在图②中画圆的一个内接正八边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,点E是直线AB上的点,过点E的直线l交直线CD于点F,EG平分∠BEF交CD于点G.在直线l绕点E旋转的过程中,图中∠1,∠2的度数可以分别是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含的式子表示);
(2)求抛物线的对称轴;
(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】诗词是中国人最经典的情感表达方式,也是民族生存延续的命脉.为了弘扬诗词国学,我校开展了“经典咏流传”的活动.轻拨经典的琴弦,我们将国家、民族、文化的美好精神文化传承下来,赋予经典文化以时代的灵魂.现我校初二(1)班为参加“经典咏流传”活动,班委会准备租赁演出服装、购买部分道具供班级集体使用.
(1)班委会通过多方比较,决定用500元在A商店租赁服装,用300元在B商店购买道具.已知租赁一套服装比购买一套道具贵30元,同时所需道具比所需服装多5套,则初二(1)班班委会租赁了多少套演出服装、购买了多少套道具?
(2)因后期参赛节目人员的调整,需要租赁更多的服装,购买更多的道具.经初步统计,最终需要租赁的演出服装套数比(1)中的演出服装套数增加了5a%(a<60),道具套数比(1)中的道具套数增加了2a%.初二(1)班班委会需要再次租赁服装和购买道具,又前去与A商店、B商店议价,两个商店都在原来的售价上给予了a%的优惠,这次租赁服装和购买道具总共用了279元,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com