精英家教网 > 初中数学 > 题目详情

【题目】如图①,在正方形中,点分别在上,且

1)试探索线段的关系,写出你的结论并说明理由;

2)连接,分别取的中点,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.

【答案】1AFDEAFDE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.

【解析】

1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AFDE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AFDE

2)根据已知可得HKKJIJHI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.

解:(1AFDE AFDE

ABCD是正方形,

ABAD,∠DAB=∠ABC90°,

AEBF

∴△DAE≌△ABF

AFDE,∠BAF=∠ADE

DAB90°,

∴∠BAF+∠DAF90°,

∴∠ADE+∠DAF90°,

AFDE

AFDEAFDE

2)四边形HIJK是正方形.

如下图,HIJK分别是AEEFFDDA的中点,

HIKJAFHKIJED

AFDE

HIKJHKIJ

∴四边形HIJK是菱形,

∵△DAE≌△ABF

∴∠ADE=∠BAF

∵∠ADE+AED90°,

∴∠BAF+AED90°,

∴∠AOE90°

∴∠KHI90°,

∴四边形HIJK是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,以AB为直径的⊙OAC于点E,交BC于点DPAC延长线上一点,且∠PBCBAC,连接DEBE

(1)求证:BP是⊙O的切线;

(2)若sinPBCAB=10,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蔬菜基地种植了娃娃菜和油菜两种蔬菜共亩,设种植娃娃菜亩,总收益为万元,有关数据见下表:

成本(单位:万元/亩)

销售额(单位:万元/亩)

娃娃菜

2.4

3

油菜

2

2.5

1)求关于的函数关系式(收益 = 销售额 成本);

2)若计划投入的总成本不超过万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?

3)已知娃娃菜每亩地需要化肥kg,油菜每亩地需要化肥kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的倍,结果运送完全部化肥的次数比原计划少次,求基地原计划每次运送多少化肥.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:ABCADE是等边三角形,ADBC边上的中线.求证:BE=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别是不等边ABC(ABBCAC互不相等)的边ABAC的中点.点OABC所在平面上的动点,连接OBOC,点GF分别是OBOC的中点,顺次连接点DGFE.

(1)如图,当点OABC的内部时,求证:四边形DGFE是平行四边形;

(2)若四边形DGFE是菱形,则OABC应满足怎样的数量关系?(直接写出答案,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ACBD相交于OAE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,两条平行景观长廊l1l2间有一条“U”形通道,其中AB段与景观长廊l145°角,长为20m;BC段与景观长廊垂直,长为10m,CD段与景观长廊l260°角,长为10m,求两景观长廊间的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yaxaya≠0)在同一直角坐标系中的图象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

查看答案和解析>>

同步练习册答案