【题目】x,y为实数,且满足,则y的最大值是_____.
【答案】
【解析】
本题是以典型的“△”法求函数最值问题,通过观察,分母为二次函数,分子为一次函数,且验证分母△<0,分母不能为零,所以想到用“△”法,将函数转化成关于x的一元二次方程,利用该方程的△≥0,列出关于y的一元二次不等式,求解即可.
解:∵x2+3x+3=0时,△=32﹣12<0,
∴x2+3x+3≠0;
当y=0时,2x+2=0,可得x=﹣1,
当y≠0时,所以可将,变形为yx2+(3y﹣2)x+3y﹣2=0,把它视为关于x的一元二次方程,
∵x为实数,
∴△≥0,即△=(3y﹣2)2﹣4y(3y﹣2)=﹣(3y2+4y﹣4)=﹣(3y﹣2)(y+2)≥0,
∴(3y﹣2)(y+2)≤0,
解之得,﹣2≤y≤;
所以y的最大值为.
故答案为.
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,对于任意的实数,直线都经过平面内一个定点.
(1)求点的坐标.
(2)反比例函数的图象与直线交于点和另外一点
①求的值;
②当时,求的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.
(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).
①与直线y=3x﹣5相离的点是 ;
②若直线y=3x+b与△ABC相离,求b的取值范围;
(2)设直线y=x+3、直线y=﹣x+3及直线y=﹣2围成的图形为W,⊙T的半径为1,圆心T的坐标为(t,0),直接写出⊙T与图形W相离的t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )
A.主视图B.俯视图
C.左视图D.主视图、俯视图和左视图都改变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c的图象经过点A(3,1),点B(0,4).
(1)求该二次函数的表达式及顶点坐标;
(2)点C(m,n)在该二次函数图象上.
①当m=﹣1时,求n的值;
②当m≤x≤3时,n最大值为5,最小值为1,请根据图象直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线?
小明的做法是:
(1)如图2,画;
(2)以为圆心,任意长为半径画圆弧,分别交直线,于点,;
(3)连结并延长交直线于点;
请你先完成下面的证明,然后完成第(4)步作图:
∵
∴( )
∵以为圆心,任意长为半径画圆弧,分别交直线,于点,
∴
∴
∴
∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( )
根据上面的推理证明完成第(4)步作图
(4)请在图2画板内作出“直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.
第(4)步这么作图的理论依据是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=BC,∠ABC=90°,将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.作射线BD,点C关于射线BD的对称点为点E.连接AE,CE.
(1)依题意补全图形;
(2)若α=20°,直接写出∠AEC的度数;
(3)写出一个α的值,使AE=时,线段CE的长为﹣1,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)
(1)求这两个函数解析式;
(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com