精英家教网 > 初中数学 > 题目详情

【题目】如图,点三个内角的角平分线的交点,连接,且,则的度数为__________

【答案】

【解析】

由角平分线的性质可得∠ABP+BAP=60°,由“SAS”可证ACP≌△BCP,可得AP=PE,∠CAP=CEP,可得PE=BE,由等腰三角形的性质和外角性质可得∠PAB=2PBA,即可求解.

如图,在BC上截取CE=AC,连接PE

∵∠ACB=60°
∴∠CAB+ABC=120°
∵点PABC三个内角的角平分线的交点,
∴∠CAP=BAP=CAB,∠ABP=CBP=ABC,∠ACP=BCP
∴∠ABP+BAP=60°
CA=CE,∠ACP=BCPCP=CP
∴△ACP≌△ECPSAS
AP=PE,∠CAP=CEP
CA+AP=BC,且CB=CE+BE
AP=BE
BE=PE
∴∠EPB=EBP
∴∠PEC=EBP+EPB=2PBE=CAP
∴∠PAB=2PBA,且∠ABP+BAP=60°
∴∠PAB=40°
∴∠CAB=80°
故答案为:80°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为落实美丽抚顺的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.

(1)甲、乙两工程队每天能改造道路的长度分别是多少米?

(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式.

(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,

问:球出手时,他距离地面的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的网格中,已知A04),B(﹣22),C30).

1)在如图网格中画出ABC,及ABC关于x轴对称的A1B1C1

2)写出点A1B1C1的坐标.

3)求出ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张三角形纸片ABC,其中BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动至点C,△B′C′D面积的大小变化情况是(  )

A. 一直减小 B. 一直不变 C. 先减小后增大 D. 先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD的一组对边AD、BC的延长线相交于点E.另一组对边AB、DC的延长线相交于点F,若cosABC=cosADC=,CD=5,CF=ED=n,则AD的长为_____(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:

BD=CE;BDCE;③∠ACE+DBC=45°;BE2=2(AD2+AB2),

其中结论正确的个数是

A.1 B.2 C3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:三边长和面积都是整数的三角形称为“整数三角形”.

数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.

小亮用12根火柴棒,摆成如图所示的“整数三角形”;

小颖分别用24根和30根火柴棒摆出直角“整数三角形”;

小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.

⑴请你画出小颖和小辉摆出的“整数三角形”的示意图;

⑵你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.

①画出等边“整数三角形”;

②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )

A. 2 B. C. D. 4

查看答案和解析>>

同步练习册答案